Add Gemma 2 (#88)
This commit is contained in:
committed by
GitHub
parent
7957378077
commit
0c08f3a7e4
@@ -262,3 +262,111 @@ extension GemmaModel: LoRAModel {
|
||||
model.layers.map { ($0.attention, ["q_proj", "v_proj"]) }
|
||||
}
|
||||
}
|
||||
|
||||
// Gemma 2
|
||||
|
||||
// Port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/gemma2.py
|
||||
|
||||
// Minimal changes from Gemma TransformerBlock
|
||||
private class Gemma2TransformerBlock: Module {
|
||||
|
||||
@ModuleInfo(key: "self_attn") var attention: Attention
|
||||
let mlp: MLP
|
||||
|
||||
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
|
||||
@ModuleInfo(key: "pre_feedforward_layernorm") var preFeedforwardLayerNorm: RMSNorm
|
||||
@ModuleInfo(key: "post_feedforward_layernorm") var postFeedforwardLayerNorm: RMSNorm
|
||||
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
|
||||
|
||||
public init(_ args: GemmaConfiguration) {
|
||||
self._attention.wrappedValue = Attention(args)
|
||||
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
|
||||
self._inputLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
self._preFeedforwardLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
self._postFeedforwardLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
self._postAttentionLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
|
||||
let h = x + postAttentionLayerNorm(r)
|
||||
r = mlp(preFeedforwardLayerNorm(h))
|
||||
let out = h + postFeedforwardLayerNorm(r)
|
||||
return (out, cache)
|
||||
}
|
||||
}
|
||||
|
||||
// Uses Gemma2TransformerBlock, otherwise same as GemmaModelInner
|
||||
public class Gemma2ModelInner: Module {
|
||||
|
||||
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
|
||||
|
||||
fileprivate let layers: [Gemma2TransformerBlock]
|
||||
fileprivate let norm: RMSNorm
|
||||
|
||||
let hiddenScale: Float
|
||||
|
||||
public init(_ args: GemmaConfiguration) {
|
||||
precondition(args.vocabularySize > 0)
|
||||
|
||||
self._embedTokens.wrappedValue = Embedding(
|
||||
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
|
||||
|
||||
self.hiddenScale = pow(Float(args.hiddenSize), 0.5)
|
||||
|
||||
self.layers = (0 ..< args.hiddenLayers)
|
||||
.map { _ in
|
||||
Gemma2TransformerBlock(args)
|
||||
}
|
||||
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
var h = embedTokens(inputs)
|
||||
h = h * hiddenScale
|
||||
|
||||
var mask: MLXArray? = nil
|
||||
if h.dim(1) > 1 {
|
||||
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
|
||||
mask = mask?.asType(h.dtype)
|
||||
}
|
||||
|
||||
var newCache = [(MLXArray, MLXArray)]()
|
||||
|
||||
for (i, layer) in layers.enumerated() {
|
||||
var cacheUpdate: (MLXArray, MLXArray)
|
||||
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
|
||||
newCache.append(cacheUpdate)
|
||||
}
|
||||
|
||||
return (norm(h), newCache)
|
||||
}
|
||||
}
|
||||
|
||||
// Uses Gemma2ModelInner, otherwise same as GemmaModel
|
||||
public class Gemma2Model: Module, LLMModel {
|
||||
|
||||
public let vocabularySize: Int
|
||||
let model: Gemma2ModelInner
|
||||
|
||||
public init(_ args: GemmaConfiguration) {
|
||||
self.vocabularySize = args.vocabularySize
|
||||
self.model = Gemma2ModelInner(args)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
var (out, cache) = model(inputs, cache: cache)
|
||||
out = model.embedTokens.asLinear(out)
|
||||
return (out, cache)
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user