chore: add top_p sampling example (#34)
This commit is contained in:
@@ -5,10 +5,33 @@ import Foundation
|
|||||||
import MLX
|
import MLX
|
||||||
import MLXRandom
|
import MLXRandom
|
||||||
|
|
||||||
private func sample(logits: MLXArray, temp: Float) -> MLXArray {
|
private func topPSampling(logits: MLXArray, topP: Float, temp: Float) -> MLXArray {
|
||||||
|
var logits = logits
|
||||||
|
if logits.dtype == .bfloat16 {
|
||||||
|
logits = logits.asType(.float32)
|
||||||
|
}
|
||||||
|
|
||||||
|
let probs = softMax(logits / temp, axis: -1)
|
||||||
|
let sortedIndices = argSort(probs, axis: -1)
|
||||||
|
|
||||||
|
// probs shape is [B,V] and after take it will be [1, B, V], so we squeeze it back to [B, V]
|
||||||
|
let sortedProbs = take(probs, sortedIndices, axis: -1).squeezed(axis: 0)
|
||||||
|
|
||||||
|
let cumulativeProbs = cumsum(sortedProbs, axis: -1)
|
||||||
|
|
||||||
|
let topProbs = MLX.where(cumulativeProbs .> (1 - topP), sortedProbs, zeros(like: sortedProbs))
|
||||||
|
|
||||||
|
let sortedToken = categorical(log(topProbs))
|
||||||
|
return sortedIndices.squeezed(axis: 0)[sortedToken]
|
||||||
|
}
|
||||||
|
|
||||||
|
private func sample(logits: MLXArray, temp: Float, topP: Float = 1.0) -> MLXArray {
|
||||||
if temp == 0 {
|
if temp == 0 {
|
||||||
return argMax(logits, axis: -1)
|
return argMax(logits, axis: -1)
|
||||||
} else {
|
} else {
|
||||||
|
if topP > 0 && topP < 1 {
|
||||||
|
return topPSampling(logits: logits, topP: topP, temp: temp)
|
||||||
|
}
|
||||||
return categorical(logits * (1 / temp))
|
return categorical(logits * (1 / temp))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -19,15 +42,16 @@ private func sample(logits: MLXArray, temp: Float) -> MLXArray {
|
|||||||
public struct TokenIterator: Sequence, IteratorProtocol {
|
public struct TokenIterator: Sequence, IteratorProtocol {
|
||||||
let model: LLMModel
|
let model: LLMModel
|
||||||
let temp: Float
|
let temp: Float
|
||||||
|
let topP: Float
|
||||||
var y: MLXArray
|
var y: MLXArray
|
||||||
var cache: [(MLXArray, MLXArray)]
|
var cache: [(MLXArray, MLXArray)]
|
||||||
|
|
||||||
var first = true
|
var first = true
|
||||||
|
|
||||||
public init(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) {
|
public init(prompt: MLXArray, model: LLMModel, temp: Float = 0.0, topP: Float = 1.0) {
|
||||||
self.model = model
|
self.model = model
|
||||||
self.temp = temp
|
self.temp = temp
|
||||||
|
self.topP = topP
|
||||||
self.y = prompt
|
self.y = prompt
|
||||||
self.cache = []
|
self.cache = []
|
||||||
}
|
}
|
||||||
@@ -35,7 +59,7 @@ public struct TokenIterator: Sequence, IteratorProtocol {
|
|||||||
mutating public func next() -> MLXArray? {
|
mutating public func next() -> MLXArray? {
|
||||||
var logits: MLXArray
|
var logits: MLXArray
|
||||||
(logits, cache) = model(expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
|
(logits, cache) = model(expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
|
||||||
y = sample(logits: logits[-1, axis: 1], temp: temp)
|
y = sample(logits: logits[-1, axis: 1], temp: temp, topP: topP)
|
||||||
|
|
||||||
return y
|
return y
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user