feat: Qwen2 support
This commit is contained in:
@@ -31,6 +31,7 @@ public enum ModelType: String, Codable {
|
||||
case llama
|
||||
case phi
|
||||
case gemma
|
||||
case qwen2
|
||||
|
||||
func createModel(configuration: URL) throws -> LLMModel {
|
||||
switch self {
|
||||
@@ -46,6 +47,10 @@ public enum ModelType: String, Codable {
|
||||
let configuration = try JSONDecoder().decode(
|
||||
GemmaConfiguration.self, from: Data(contentsOf: configuration))
|
||||
return GemmaModel(configuration)
|
||||
case .qwen2:
|
||||
let configuration = try JSONDecoder().decode(
|
||||
Qwen2Configuration.self, from: Data(contentsOf: configuration))
|
||||
return Qwen2Model(configuration)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -85,6 +85,13 @@ extension ModelConfiguration {
|
||||
"<start_of_turn>user \(prompt)<end_of_turn><start_of_turn>model"
|
||||
}
|
||||
|
||||
public static let qwen205b4bit = ModelConfiguration(
|
||||
id: "mlx-community/Qwen1.5-0.5B-Chat-4bit",
|
||||
overrideTokenizer: "PreTrainedTokenizer"
|
||||
) { prompt in
|
||||
"<|im_start|>user \(prompt)<|im_end|><|im_start|>assistant"
|
||||
}
|
||||
|
||||
private enum BootstrapState {
|
||||
case idle
|
||||
case bootstrapping
|
||||
@@ -102,6 +109,7 @@ extension ModelConfiguration {
|
||||
codeLlama13b4bit,
|
||||
phi4bit,
|
||||
gemma2bQuantized,
|
||||
qwen205b4bit,
|
||||
])
|
||||
bootstrapState = .bootstrapped
|
||||
|
||||
|
||||
263
Libraries/LLM/Qwen2.swift
Normal file
263
Libraries/LLM/Qwen2.swift
Normal file
@@ -0,0 +1,263 @@
|
||||
//
|
||||
// Qwen2.swift
|
||||
// LLM
|
||||
//
|
||||
// Created by John Mai on 2024/3/3.
|
||||
//
|
||||
|
||||
import Foundation
|
||||
import MLX
|
||||
import MLXNN
|
||||
|
||||
// port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/qwen2.py
|
||||
|
||||
private class Attention: Module {
|
||||
let args: Qwen2Configuration
|
||||
let repeats: Int
|
||||
let scale: Float
|
||||
|
||||
@ModuleInfo(key: "q_proj") var wq: Linear
|
||||
@ModuleInfo(key: "k_proj") var wk: Linear
|
||||
@ModuleInfo(key: "v_proj") var wv: Linear
|
||||
@ModuleInfo(key: "o_proj") var wo: Linear
|
||||
|
||||
let rope: RoPE
|
||||
|
||||
public init(_ args: Qwen2Configuration) {
|
||||
self.args = args
|
||||
|
||||
let dim = args.hiddenSize
|
||||
let heads = args.attentionHeads
|
||||
let kvHeads = args.kvHeads
|
||||
|
||||
self.repeats = heads / kvHeads
|
||||
|
||||
let headDim = args.hiddenSize / heads
|
||||
self.scale = pow(Float(headDim), -0.5)
|
||||
|
||||
_wq.wrappedValue = Linear(dim, heads * headDim, bias: true)
|
||||
_wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: true)
|
||||
_wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: true)
|
||||
_wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
|
||||
|
||||
let ropeScale: Float
|
||||
if let ropeScaling = args.ropeScaling, ropeScaling["type"] == .string("linear"),
|
||||
let factor = ropeScaling["factor"]
|
||||
{
|
||||
switch factor {
|
||||
case .string:
|
||||
fatalError("ropeScaling.factor must be a float")
|
||||
case .float(let v):
|
||||
ropeScale = 1 / v
|
||||
}
|
||||
} else {
|
||||
ropeScale = 1
|
||||
}
|
||||
|
||||
self.rope = RoPE(
|
||||
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta,
|
||||
scale: ropeScale)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil) -> (MLXArray, (MLXArray, MLXArray))
|
||||
{
|
||||
let (B, L) = (x.dim(0), x.dim(1))
|
||||
|
||||
var queries = wq(x)
|
||||
var keys = wk(x)
|
||||
var values = wv(x)
|
||||
|
||||
// prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
|
||||
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
||||
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
||||
|
||||
if repeats > 1 {
|
||||
keys = MLXArray.repeat(keys, count: repeats, axis: 1)
|
||||
values = MLXArray.repeat(values, count: repeats, axis: 1)
|
||||
}
|
||||
|
||||
if let (keyCache, valueCache) = cache {
|
||||
queries = rope(queries, offset: keyCache.dim(2))
|
||||
keys = rope(keys, offset: keyCache.dim(2))
|
||||
keys = concatenated([keyCache, keys], axis: 2)
|
||||
values = concatenated([valueCache, values], axis: 2)
|
||||
} else {
|
||||
queries = rope(queries)
|
||||
keys = rope(keys)
|
||||
}
|
||||
|
||||
var scores = (queries * scale).matmul(keys.transposed(0, 1, 3, 2))
|
||||
if let mask {
|
||||
scores = scores + mask
|
||||
}
|
||||
|
||||
scores = softMax(scores.asType(.float32), axis: -1).asType(scores.dtype)
|
||||
|
||||
let output = matmul(scores, values).transposed(0, 2, 1, 3).reshaped(B, L, -1)
|
||||
|
||||
return (wo(output), (keys, values))
|
||||
}
|
||||
}
|
||||
|
||||
private class MLP: Module, UnaryLayer {
|
||||
@ModuleInfo(key: "gate_proj") var gate: Linear
|
||||
@ModuleInfo(key: "down_proj") var down: Linear
|
||||
@ModuleInfo(key: "up_proj") var up: Linear
|
||||
|
||||
public init(dimensions: Int, hiddenDimensions: Int) {
|
||||
_gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
||||
_down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
|
||||
_up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
down(silu(gate(x)) * up(x))
|
||||
}
|
||||
}
|
||||
|
||||
private class TransformerBlock: Module {
|
||||
@ModuleInfo(key: "self_attn") var attention: Attention
|
||||
let mlp: MLP
|
||||
|
||||
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
|
||||
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
|
||||
|
||||
public init(_ args: Qwen2Configuration) {
|
||||
_attention.wrappedValue = Attention(args)
|
||||
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
|
||||
_inputLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
_postAttentionLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil) -> (MLXArray, (MLXArray, MLXArray))
|
||||
{
|
||||
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
|
||||
let h = x + r
|
||||
r = mlp(postAttentionLayerNorm(h))
|
||||
let out = h + r
|
||||
return (out, cache)
|
||||
}
|
||||
}
|
||||
|
||||
public class Qwen2ModelInner: Module {
|
||||
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
|
||||
|
||||
fileprivate let layers: [TransformerBlock]
|
||||
let norm: RMSNorm
|
||||
|
||||
public init(_ args: Qwen2Configuration) {
|
||||
precondition(args.vocabularySize > 0)
|
||||
|
||||
_embedTokens.wrappedValue = Embedding(
|
||||
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
|
||||
|
||||
self.layers = (0 ..< args.hiddenLayers)
|
||||
.map { _ in
|
||||
TransformerBlock(args)
|
||||
}
|
||||
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)])
|
||||
{
|
||||
var h = embedTokens(inputs)
|
||||
|
||||
var mask: MLXArray? = nil
|
||||
if h.dim(1) > 1 {
|
||||
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
|
||||
mask = mask?.asType(h.dtype)
|
||||
}
|
||||
|
||||
var newCache = [(MLXArray, MLXArray)]()
|
||||
|
||||
for (i, layer) in layers.enumerated() {
|
||||
var cacheUpdate: (MLXArray, MLXArray)
|
||||
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
|
||||
newCache.append(cacheUpdate)
|
||||
}
|
||||
|
||||
return (norm(h), newCache)
|
||||
}
|
||||
}
|
||||
|
||||
public class Qwen2Model: Module, LLMModel {
|
||||
public let vocabularySize: Int
|
||||
let model: Qwen2ModelInner
|
||||
|
||||
@ModuleInfo(key: "lm_head") var lmHead: Linear
|
||||
|
||||
public init(_ args: Qwen2Configuration) {
|
||||
self.vocabularySize = args.vocabularySize
|
||||
self.model = Qwen2ModelInner(args)
|
||||
_lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: false)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)])
|
||||
{
|
||||
let (out, cache) = model(inputs, cache: cache)
|
||||
return (lmHead(out), cache)
|
||||
}
|
||||
}
|
||||
|
||||
public struct Qwen2Configuration: Codable {
|
||||
var hiddenSize: Int
|
||||
var hiddenLayers: Int
|
||||
var intermediateSize: Int
|
||||
var attentionHeads: Int
|
||||
var rmsNormEps: Float
|
||||
var vocabularySize: Int
|
||||
var kvHeads: Int
|
||||
var ropeTheta: Float = 1_000_000
|
||||
var ropeTraditional: Bool = false
|
||||
var ropeScaling: [String: StringOrNumber]? = nil
|
||||
|
||||
enum CodingKeys: String, CodingKey {
|
||||
case hiddenSize = "hidden_size"
|
||||
case hiddenLayers = "num_hidden_layers"
|
||||
case intermediateSize = "intermediate_size"
|
||||
case attentionHeads = "num_attention_heads"
|
||||
case rmsNormEps = "rms_norm_eps"
|
||||
case vocabularySize = "vocab_size"
|
||||
case kvHeads = "num_key_value_heads"
|
||||
case ropeTheta = "rope_theta"
|
||||
case ropeTraditional = "rope_traditional"
|
||||
case ropeScaling = "rope_scaling"
|
||||
}
|
||||
|
||||
public init(from decoder: Decoder) throws {
|
||||
// custom implementation to handle optional keys with required values
|
||||
let container: KeyedDecodingContainer<Qwen2Configuration.CodingKeys> =
|
||||
try decoder.container(
|
||||
keyedBy: Qwen2Configuration.CodingKeys.self)
|
||||
|
||||
self.hiddenSize = try container.decode(
|
||||
Int.self, forKey: Qwen2Configuration.CodingKeys.hiddenSize)
|
||||
self.hiddenLayers = try container.decode(
|
||||
Int.self, forKey: Qwen2Configuration.CodingKeys.hiddenLayers)
|
||||
self.intermediateSize = try container.decode(
|
||||
Int.self, forKey: Qwen2Configuration.CodingKeys.intermediateSize)
|
||||
self.attentionHeads = try container.decode(
|
||||
Int.self, forKey: Qwen2Configuration.CodingKeys.attentionHeads)
|
||||
self.rmsNormEps = try container.decode(
|
||||
Float.self, forKey: Qwen2Configuration.CodingKeys.rmsNormEps)
|
||||
self.vocabularySize = try container.decode(
|
||||
Int.self, forKey: Qwen2Configuration.CodingKeys.vocabularySize)
|
||||
self.kvHeads = try container.decode(Int.self, forKey: Qwen2Configuration.CodingKeys.kvHeads)
|
||||
self.ropeTheta =
|
||||
try container.decodeIfPresent(
|
||||
Float.self, forKey: Qwen2Configuration.CodingKeys.ropeTheta)
|
||||
?? 1_000_000
|
||||
self.ropeTraditional =
|
||||
try container.decodeIfPresent(
|
||||
Bool.self, forKey: Qwen2Configuration.CodingKeys.ropeTraditional) ?? false
|
||||
self.ropeScaling = try container.decodeIfPresent(
|
||||
[String: StringOrNumber].self, forKey: Qwen2Configuration.CodingKeys.ropeScaling)
|
||||
}
|
||||
}
|
||||
@@ -116,4 +116,5 @@ public func discardUnhandledMerges(tokenizerData: Config) -> Config {
|
||||
let replacementTokenizers = [
|
||||
"CodeLlamaTokenizer": "LlamaTokenizer",
|
||||
"GemmaTokenizer": "PreTrainedTokenizer",
|
||||
"Qwen2Tokenizer": "PreTrainedTokenizer",
|
||||
]
|
||||
|
||||
@@ -43,6 +43,8 @@ struct SyncGenerator: AsyncParsableCommand {
|
||||
let modelConfiguration = ModelConfiguration.configuration(id: model)
|
||||
let (model, tokenizer) = try await load(configuration: modelConfiguration)
|
||||
|
||||
print("Model loaded -> \(self.model)")
|
||||
|
||||
let prompt = modelConfiguration.prepare(prompt: self.prompt)
|
||||
let promptTokens = tokenizer.encode(text: prompt)
|
||||
|
||||
@@ -132,6 +134,8 @@ struct AsyncGenerator: AsyncParsableCommand {
|
||||
let modelConfiguration = ModelConfiguration.configuration(id: model)
|
||||
let (model, tokenizer) = try await load(configuration: modelConfiguration)
|
||||
|
||||
print("Model loaded -> \(self.model)")
|
||||
|
||||
let prompt = modelConfiguration.prepare(prompt: self.prompt)
|
||||
let promptTokens = tokenizer.encode(text: prompt)
|
||||
|
||||
|
||||
@@ -7,6 +7,7 @@
|
||||
objects = {
|
||||
|
||||
/* Begin PBXBuildFile section */
|
||||
52A776182B94B5EE00AA6E80 /* Qwen2.swift in Sources */ = {isa = PBXBuildFile; fileRef = 52A776172B94B5EE00AA6E80 /* Qwen2.swift */; };
|
||||
C3288D762B6D9313009FF608 /* LinearModelTraining.swift in Sources */ = {isa = PBXBuildFile; fileRef = C3288D752B6D9313009FF608 /* LinearModelTraining.swift */; };
|
||||
C3288D7B2B6D9339009FF608 /* ArgumentParser in Frameworks */ = {isa = PBXBuildFile; productRef = C3288D7A2B6D9339009FF608 /* ArgumentParser */; };
|
||||
C34E48F52B696F0B00FCB841 /* LLMTool.swift in Sources */ = {isa = PBXBuildFile; fileRef = C34E48F42B696F0B00FCB841 /* LLMTool.swift */; };
|
||||
@@ -180,6 +181,7 @@
|
||||
/* End PBXCopyFilesBuildPhase section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
52A776172B94B5EE00AA6E80 /* Qwen2.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = Qwen2.swift; sourceTree = "<group>"; };
|
||||
C325DE3F2B648CDB00628871 /* README.md */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = net.daringfireball.markdown; path = README.md; sourceTree = "<group>"; };
|
||||
C3288D732B6D9313009FF608 /* LinearModelTraining */ = {isa = PBXFileReference; explicitFileType = "compiled.mach-o.executable"; includeInIndex = 0; path = LinearModelTraining; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
C3288D752B6D9313009FF608 /* LinearModelTraining.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LinearModelTraining.swift; sourceTree = "<group>"; };
|
||||
@@ -363,6 +365,7 @@
|
||||
C34E48ED2B696E6500FCB841 /* Load.swift */,
|
||||
C3E786AA2B8D1AEC0004D037 /* Evaluate.swift */,
|
||||
C3E786AC2B8D4AF50004D037 /* Tokenizer.swift */,
|
||||
52A776172B94B5EE00AA6E80 /* Qwen2.swift */,
|
||||
);
|
||||
path = LLM;
|
||||
sourceTree = "<group>";
|
||||
@@ -829,6 +832,7 @@
|
||||
C3A8B3AC2B9283150002EFB8 /* Models.swift in Sources */,
|
||||
C3E786AB2B8D1AEC0004D037 /* Evaluate.swift in Sources */,
|
||||
C38935CC2B869C870037B833 /* Llama.swift in Sources */,
|
||||
52A776182B94B5EE00AA6E80 /* Qwen2.swift in Sources */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
|
||||
@@ -55,6 +55,10 @@
|
||||
argument = "--model mlx-community/CodeLlama-13b-Instruct-hf-4bit-MLX"
|
||||
isEnabled = "NO">
|
||||
</CommandLineArgument>
|
||||
<CommandLineArgument
|
||||
argument = "--model mlx-community/Qwen1.5-0.5B-Chat-4bit"
|
||||
isEnabled = "YES">
|
||||
</CommandLineArgument>
|
||||
<CommandLineArgument
|
||||
argument = "--prompt 'func sortArray(_ array: [Int]) -> String { <FILL_ME> }'"
|
||||
isEnabled = "NO">
|
||||
@@ -69,7 +73,7 @@
|
||||
</CommandLineArgument>
|
||||
<CommandLineArgument
|
||||
argument = "--model mlx-community/phi-2-hf-4bit-mlx"
|
||||
isEnabled = "YES">
|
||||
isEnabled = "NO">
|
||||
</CommandLineArgument>
|
||||
</CommandLineArguments>
|
||||
</LaunchAction>
|
||||
|
||||
Reference in New Issue
Block a user