implement LoRA / QLoRA (#46)
* implement LoRA / QLoRA - example of using MLX to fine-tune an LLM with low rank adaptation (LoRA) for a target task - see also https://arxiv.org/abs/2106.09685 - based on https://github.com/ml-explore/mlx-examples/tree/main/lora * add some command line flags I found useful during use - --quiet -- don't print decorator text, just the generated text - --prompt @/tmp/file.txt -- load prompt from file * user can specify path to model OR model identifier in huggingface * update mlx-swift reference Co-authored-by: Ashraful Islam <ashraful.meche@gmail.com> Co-authored-by: JustinMeans <46542161+JustinMeans@users.noreply.github.com>
This commit is contained in:
@@ -8,7 +8,7 @@ See various READMEs:
|
||||
|
||||
Build the `llm-tool` scheme in Xcode.
|
||||
|
||||
### Running (Xcode)
|
||||
### Running: Xcode
|
||||
|
||||
To run this in Xcode simply press cmd-opt-r to set the scheme arguments. For example:
|
||||
|
||||
@@ -30,7 +30,7 @@ The model should be a path in the Hugging Face repository, e.g.:
|
||||
|
||||
See [LLM](../../Libraries/LLM/README.md) for more info.
|
||||
|
||||
### Running (Command Line)
|
||||
### Running: Command Line
|
||||
|
||||
Use the `mlx-run` script to run the command line tools:
|
||||
|
||||
@@ -60,3 +60,184 @@ Building in Release / optimizations will remove a lot of tail calls in the C++
|
||||
layer. These lead to the stack overflows.
|
||||
|
||||
See discussion here: https://github.com/ml-explore/mlx-swift-examples/issues/3
|
||||
|
||||
## LoRA
|
||||
|
||||
`llm-tool` provides an example LoRA driver based on:
|
||||
|
||||
- https://github.com/ml-explore/mlx-examples/blob/main/lora/README.md
|
||||
|
||||
This is an example of using MLX to fine-tune an LLM with low rank adaptation
|
||||
(LoRA) for a target task.[^lora] The example also supports quantized LoRA
|
||||
(QLoRA).[^qlora] The example works with Llama and Mistral style models
|
||||
available on Hugging Face.
|
||||
|
||||
In this example we'll use the WikiSQL[^wikisql] dataset to train the LLM to
|
||||
generate SQL queries from natural language. However, the example is intended to
|
||||
be general should you wish to use a custom dataset.
|
||||
|
||||
> Note: Some of the prompts have newlines in them which is difficult to achieve via running in Xcode.
|
||||
|
||||
Running `llm-tool lora` will produce help:
|
||||
|
||||
```
|
||||
SUBCOMMANDS:
|
||||
train LoRA training
|
||||
fuse Fuse lora adapter weights back in to original model
|
||||
test LoRA testing
|
||||
eval LoRA evaluation
|
||||
```
|
||||
|
||||
### Training
|
||||
|
||||
The first step will be training the LoRA adapter. Example training data
|
||||
is available in $SRCROOT/Data/lora. You can use your
|
||||
own data in either `jsonl` or `txt` format with one entry per line.
|
||||
|
||||
We need to specify a number of parameters:
|
||||
|
||||
- `--model` -- which model to use. This can be quantized [^qlora] or not [^lora]
|
||||
- `--data` -- directory with the test, train and valid files. These can be either `jsonl` or `txt` files
|
||||
- `--adapter` -- path to a safetensors file to write the fine tuned parameters into
|
||||
|
||||
Additionally the performance of the fine tuning can be controlled with:
|
||||
|
||||
- `--batch-size` -- size of the minibatches to run in the training loop, e.g. how many prompts to process per iteration
|
||||
- `--lora-layers` -- the number of layers in the Attention section of the model to adapt and train
|
||||
- `--iterations` -- the number of iterations to train for
|
||||
|
||||
If desired, the amount of memory used can be adjusted with:
|
||||
|
||||
- `--cache-size` -- the number shown below limits the cache size to 1024M
|
||||
|
||||
Here is an example run using adapters on the last 4 layers of the model:
|
||||
|
||||
```
|
||||
./mlx-run llm-tool lora train \
|
||||
--model mlx-community/Mistral-7B-v0.1-hf-4bit-mlx \
|
||||
--data Data/lora \
|
||||
--adapter /tmp/lora-layers-4.safetensors \
|
||||
--batch-size 1 --lora-layers 4 \
|
||||
--cache-size 1024
|
||||
```
|
||||
|
||||
giving output like this:
|
||||
|
||||
```
|
||||
Model: mlx-community/Mistral-7B-v0.1-hf-4bit-mlx
|
||||
Total parameters: 1,242M
|
||||
Trainable parameters: 0.426M
|
||||
Iteration 1: validation loss 2.443872, validation time 3.330629s
|
||||
Iteration 10: training loss 2.356848, iterations/sec 2.640604, Tokens/sec 260.363581
|
||||
Iteration 20: training loss 2.063395, iterations/sec 2.294999, Tokens/sec 232.483365
|
||||
Iteration 30: training loss 1.63846, iterations/sec 2.279401, Tokens/sec 225.204788
|
||||
Iteration 40: training loss 1.66366, iterations/sec 2.493669, Tokens/sec 218.196057
|
||||
Iteration 50: training loss 1.470927, iterations/sec 2.301153, Tokens/sec 231.72614
|
||||
Iteration 60: training loss 1.396581, iterations/sec 2.400012, Tokens/sec 230.401195
|
||||
Iteration 70: training loss 1.587023, iterations/sec 2.422193, Tokens/sec 218.966258
|
||||
Iteration 80: training loss 1.376895, iterations/sec 2.111973, Tokens/sec 216.477187
|
||||
Iteration 90: training loss 1.245127, iterations/sec 2.383802, Tokens/sec 214.065436
|
||||
Iteration 100: training loss 1.344523, iterations/sec 2.424746, Tokens/sec 223.076649
|
||||
Iteration 100: validation loss 1.400582, validation time 3.489797s
|
||||
Iteration 100: saved weights to /tmp/lora.safetensors
|
||||
...
|
||||
Iteration 910: training loss 1.181306, iterations/sec 2.355085, Tokens/sec 212.428628
|
||||
Iteration 920: training loss 1.042286, iterations/sec 2.374377, Tokens/sec 222.479127
|
||||
Iteration 930: training loss 0.920768, iterations/sec 2.475088, Tokens/sec 220.035347
|
||||
Iteration 940: training loss 1.140762, iterations/sec 2.119886, Tokens/sec 227.039828
|
||||
Iteration 950: training loss 1.068073, iterations/sec 2.523047, Tokens/sec 218.495903
|
||||
Iteration 960: training loss 1.106662, iterations/sec 2.339293, Tokens/sec 221.063186
|
||||
Iteration 970: training loss 0.833658, iterations/sec 2.474683, Tokens/sec 213.56517
|
||||
Iteration 980: training loss 0.844026, iterations/sec 2.441064, Tokens/sec 210.663791
|
||||
Iteration 990: training loss 0.903735, iterations/sec 2.253876, Tokens/sec 218.175162
|
||||
Iteration 1000: training loss 0.872615, iterations/sec 2.343899, Tokens/sec 219.62336
|
||||
Iteration 1000: validation loss 0.714194, validation time 3.470462s
|
||||
Iteration 1000: saved weights to /tmp/lora-layers-4.safetensors
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
You can test the LoRA adapated model against the `test` dataset using this command:
|
||||
|
||||
```
|
||||
./mlx-run llm-tool lora test \
|
||||
--model mlx-community/Mistral-7B-v0.1-hf-4bit-mlx \
|
||||
--data Data/lora \
|
||||
--adapter /tmp/lora-layers-4.safetensors \
|
||||
--batch-size 1 --lora-layers 4 \
|
||||
--cache-size 1024
|
||||
```
|
||||
|
||||
This will run all the items (100 in the example data we are using) in the test set and compute the loss:
|
||||
|
||||
```
|
||||
Model: mlx-community/Mistral-7B-v0.1-hf-4bit-mlx
|
||||
Total parameters: 1,242M
|
||||
Trainable parameters: 0.426M
|
||||
Test loss 1.327623, ppl 3.772065
|
||||
```
|
||||
|
||||
### Evaluate
|
||||
|
||||
Next you can evaluate your own prompts with the fine tuned LoRA adapters. It is important to
|
||||
follow the prompt example from the training data to match the format:
|
||||
|
||||
```
|
||||
{"text": "table: 1-10015132-1\ncolumns: Player, No., Nationality, Position, Years in Toronto, School/Club Team\nQ: What school did player number 6 come from?\nA: SELECT School/Club Team FROM 1-10015132-1 WHERE No. = '6'"}
|
||||
```
|
||||
|
||||
Given that format you might issue a command like this:
|
||||
|
||||
```
|
||||
./mlx-run llm-tool lora eval \
|
||||
--model mlx-community/Mistral-7B-v0.1-hf-4bit-mlx \
|
||||
--adapter /tmp/lora-layers-4.safetensors \
|
||||
--lora-layers 4 \
|
||||
--prompt "table: 1-10015132-16
|
||||
columns: Player, No., Nationality, Position, Years in Toronto, School/Club Team
|
||||
Q: What is terrence ross' nationality
|
||||
A: "
|
||||
```
|
||||
|
||||
> Note: the prompt has newlines in it to match the format of the fine tuned prompts -- this may be easier to do with the command line than Xcode.
|
||||
|
||||
You might be treated to a response like this:
|
||||
|
||||
```
|
||||
Model: mlx-community/Mistral-7B-v0.1-hf-4bit-mlx
|
||||
Total parameters: 1,242M
|
||||
Trainable parameters: 0.426M
|
||||
Starting generation ...
|
||||
table: 1-10015132-16
|
||||
columns: Player, No., Nationality, Position, Years in Toronto, School/Club Team
|
||||
Q: What is terrence ross' nationality
|
||||
A: SELECT Nationality FROM 1-10015132-16 WHERE Player = 'Terrence Ross' AND No. = 1
|
||||
```
|
||||
|
||||
### Fusing
|
||||
|
||||
Once the adapter weights are trained you can produce new weights with the original achitecture that
|
||||
have the adapter weights merged in:
|
||||
|
||||
```
|
||||
./mlx-run llm-tool lora fuse \
|
||||
--model mlx-community/Mistral-7B-v0.1-hf-4bit-mlx \
|
||||
--adapter /tmp/lora-layers-4.safetensors \
|
||||
--output mlx-community/mistral-lora
|
||||
```
|
||||
|
||||
outputs:
|
||||
|
||||
```
|
||||
Total parameters: 1,244M
|
||||
Trainable parameters: 0.426M
|
||||
Use with:
|
||||
llm-tool eval --model mlx-community/mistral-lora
|
||||
```
|
||||
|
||||
As noted in the output these new weights can be used with the original model architecture.
|
||||
|
||||
|
||||
[^lora]: Refer to the [arXiv paper](https://arxiv.org/abs/2106.09685) for more details on LoRA.
|
||||
[^qlora]: Refer to the paper [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
|
||||
[^wikisql]: Refer to the [GitHub repo](https://github.com/salesforce/WikiSQL/tree/master) for more information about WikiSQL.
|
||||
|
||||
Reference in New Issue
Block a user