feat: Support Starcoder2 (#20)

* feat: Support Starcoder2
This commit is contained in:
John Mai
2024-03-08 13:28:37 +08:00
committed by GitHub
parent e876e18605
commit a94bf79d7e
4 changed files with 281 additions and 2 deletions

View File

@@ -32,6 +32,7 @@ public enum ModelType: String, Codable {
case phi
case gemma
case qwen2
case starcoder2
func createModel(configuration: URL) throws -> LLMModel {
switch self {
@@ -51,6 +52,10 @@ public enum ModelType: String, Codable {
let configuration = try JSONDecoder().decode(
Qwen2Configuration.self, from: Data(contentsOf: configuration))
return Qwen2Model(configuration)
case .starcoder2:
let configuration = try JSONDecoder().decode(
Starcoder2Configuration.self, from: Data(contentsOf: configuration))
return Starcoder2Model(configuration)
}
}
}

View File

@@ -0,0 +1,266 @@
//
// Starcoder2.swift
// LLM
//
// Created by John Mai on 2024/3/7.
//
import Foundation
import MLX
import MLXNN
// port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/starcoder2.py
private class Attention: Module {
let args: Starcoder2Configuration
let repeats: Int
let scale: Float
@ModuleInfo(key: "q_proj") var wq: Linear
@ModuleInfo(key: "k_proj") var wk: Linear
@ModuleInfo(key: "v_proj") var wv: Linear
@ModuleInfo(key: "o_proj") var wo: Linear
let rope: RoPE
public init(_ args: Starcoder2Configuration) {
self.args = args
let dim = args.hiddenSize
let heads = args.attentionHeads
let kvHeads = args.kvHeads
self.repeats = heads / kvHeads
let headDim = args.hiddenSize / heads
self.scale = pow(Float(headDim), -0.5)
_wq.wrappedValue = Linear(dim, heads * headDim, bias: true)
_wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: true)
_wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: true)
_wo.wrappedValue = Linear(heads * headDim, dim, bias: true)
self.rope = RoPE(dimensions: headDim, traditional: false, base: args.ropeTheta)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
let (B, L) = (x.dim(0), x.dim(1))
var queries = wq(x)
var keys = wk(x)
var values = wv(x)
// prepare the queries, keys and values for the attention computation
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
if repeats > 1 {
keys = MLXArray.repeat(keys, count: repeats, axis: 1)
values = MLXArray.repeat(values, count: repeats, axis: 1)
}
if let (keyCache, valueCache) = cache {
queries = rope(queries, offset: keyCache.dim(2))
keys = rope(keys, offset: keyCache.dim(2))
keys = concatenated([keyCache, keys], axis: 2)
values = concatenated([valueCache, values], axis: 2)
} else {
queries = rope(queries)
keys = rope(keys)
}
var scores = (queries * scale).matmul(keys.transposed(0, 1, 3, 2))
if let mask {
scores = scores + mask
}
scores = softMax(scores.asType(.float32), axis: -1).asType(scores.dtype)
let output = matmul(scores, values).transposed(0, 2, 1, 3).reshaped(B, L, -1)
return (wo(output), (keys, values))
}
}
private class MLP: Module, UnaryLayer {
@ModuleInfo(key: "c_fc") var cFc: Linear
@ModuleInfo(key: "c_proj") var cProj: Linear
public init(dimensions: Int, hiddenDimensions: Int) {
_cFc.wrappedValue = Linear(dimensions, hiddenDimensions, bias: true)
_cProj.wrappedValue = Linear(hiddenDimensions, dimensions, bias: true)
}
public func callAsFunction(_ x: MLXArray) -> MLXArray {
cProj(gelu(cFc(x)))
}
}
private class TransformerBlock: Module {
@ModuleInfo(key: "self_attn") var attention: Attention
let mlp: MLP
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: LayerNorm
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: LayerNorm
public init(_ args: Starcoder2Configuration) {
_attention.wrappedValue = Attention(args)
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
_inputLayerNorm.wrappedValue = LayerNorm(
dimensions: args.hiddenSize, eps: args.normEpsilon)
_postAttentionLayerNorm.wrappedValue = LayerNorm(
dimensions: args.hiddenSize, eps: args.normEpsilon)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
let h = x + r
r = mlp(postAttentionLayerNorm(h))
let out = h + r
return (out, cache)
}
}
public class Starcoder2ModelInner: Module {
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
fileprivate let layers: [TransformerBlock]
let norm: LayerNorm
public init(_ args: Starcoder2Configuration) {
precondition(args.vocabularySize > 0)
_embedTokens.wrappedValue = Embedding(
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
self.layers = (0 ..< args.hiddenLayers)
.map { _ in
TransformerBlock(args)
}
self.norm = LayerNorm(dimensions: args.hiddenSize, eps: args.normEpsilon)
}
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
var h = embedTokens(inputs)
var mask: MLXArray? = nil
if h.dim(1) > 1 {
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
mask = mask?.asType(h.dtype)
}
var newCache = [(MLXArray, MLXArray)]()
for (i, layer) in layers.enumerated() {
var cacheUpdate: (MLXArray, MLXArray)
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
newCache.append(cacheUpdate)
}
return (norm(h), newCache)
}
}
public class Starcoder2Model: Module, LLMModel {
public var vocabularySize: Int
public let tieWordEmbeddings: Bool
let model: Starcoder2ModelInner
@ModuleInfo(key: "lm_head") var lmHead: Linear
public init(_ args: Starcoder2Configuration) {
self.vocabularySize = args.vocabularySize
self.model = Starcoder2ModelInner(args)
self.tieWordEmbeddings = args.tieWordEmbeddings
if !self.tieWordEmbeddings {
_lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: false)
}
}
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
var (out, cache) = model(inputs, cache: cache)
if !tieWordEmbeddings {
return (lmHead(out), cache)
} else {
out = matmul(out, model.embedTokens.weight.T)
return (out, cache)
}
}
}
public struct Starcoder2Configuration: Codable {
var hiddenSize: Int
var hiddenLayers: Int
var intermediateSize: Int
var attentionHeads: Int
var kvHeads: Int
var maxPositionEmbeddings: Int = 16384
var normEpsilon: Float = 1e-5
var normType: String = "layer_norm"
var vocabularySize: Int = 49152
var ropeTheta: Float = 100000
var tieWordEmbeddings: Bool = true
enum CodingKeys: String, CodingKey {
case hiddenSize = "hidden_size"
case hiddenLayers = "num_hidden_layers"
case intermediateSize = "intermediate_size"
case attentionHeads = "num_attention_heads"
case kvHeads = "num_key_value_heads"
case maxPositionEmbeddings = "max_position_embeddings"
case normEpsilon = "norm_epsilon"
case normType = "norm_type"
case vocabularySize = "vocab_size"
case ropeTheta = "rope_theta"
case tieWordEmbeddings = "tie_word_embeddings"
}
public init(from decoder: Decoder) throws {
// custom implementation to handle optional keys with required values
let container: KeyedDecodingContainer<Starcoder2Configuration.CodingKeys> =
try decoder.container(
keyedBy: Starcoder2Configuration.CodingKeys.self)
self.hiddenSize = try container.decode(
Int.self, forKey: Starcoder2Configuration.CodingKeys.hiddenSize)
self.hiddenLayers = try container.decode(
Int.self, forKey: Starcoder2Configuration.CodingKeys.hiddenLayers)
self.intermediateSize = try container.decode(
Int.self, forKey: Starcoder2Configuration.CodingKeys.intermediateSize)
self.attentionHeads = try container.decode(
Int.self, forKey: Starcoder2Configuration.CodingKeys.attentionHeads)
self.kvHeads = try container.decode(
Int.self, forKey: Starcoder2Configuration.CodingKeys.kvHeads)
self.maxPositionEmbeddings =
try container.decodeIfPresent(
Int.self, forKey: Starcoder2Configuration.CodingKeys.maxPositionEmbeddings) ?? 16384
self.normEpsilon =
try container.decodeIfPresent(
Float.self, forKey: Starcoder2Configuration.CodingKeys.normEpsilon) ?? 1e-5
self.normType =
try container.decodeIfPresent(
String.self, forKey: Starcoder2Configuration.CodingKeys.normType) ?? "layer_norm"
self.vocabularySize =
try container.decodeIfPresent(
Int.self, forKey: Starcoder2Configuration.CodingKeys.vocabularySize) ?? 49152
self.ropeTheta =
try container.decodeIfPresent(
Float.self, forKey: Starcoder2Configuration.CodingKeys.ropeTheta)
?? 100000
self.tieWordEmbeddings =
try container.decodeIfPresent(
Bool.self, forKey: Starcoder2Configuration.CodingKeys.tieWordEmbeddings)
?? true
}
}