initial commit
This commit is contained in:
77
Libraries/LLM/Configuration.swift
Normal file
77
Libraries/LLM/Configuration.swift
Normal file
@@ -0,0 +1,77 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import Foundation
|
||||
|
||||
public enum StringOrNumber: Codable, Equatable {
|
||||
case string(String)
|
||||
case float(Float)
|
||||
|
||||
public init(from decoder: Decoder) throws {
|
||||
let values = try decoder.singleValueContainer()
|
||||
|
||||
if let v = try? values.decode(Float.self) {
|
||||
self = .float(v)
|
||||
} else {
|
||||
let v = try values.decode(String.self)
|
||||
self = .string(v)
|
||||
}
|
||||
}
|
||||
|
||||
public func encode(to encoder: Encoder) throws {
|
||||
var container = encoder.singleValueContainer()
|
||||
switch self {
|
||||
case .string(let v): try container.encode(v)
|
||||
case .float(let v): try container.encode(v)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public enum ModelType: String, Codable {
|
||||
case mistral
|
||||
case llama
|
||||
case phi
|
||||
case gemma
|
||||
|
||||
func createModel(configuration: URL) throws -> LLMModel {
|
||||
switch self {
|
||||
case .mistral, .llama:
|
||||
let configuration = try JSONDecoder().decode(
|
||||
LlamaConfiguration.self, from: Data(contentsOf: configuration))
|
||||
return LlamaModel(configuration)
|
||||
case .phi:
|
||||
let configuration = try JSONDecoder().decode(
|
||||
PhiConfiguration.self, from: Data(contentsOf: configuration))
|
||||
return PhiModel(configuration)
|
||||
case .gemma:
|
||||
let configuration = try JSONDecoder().decode(
|
||||
GemmaConfiguration.self, from: Data(contentsOf: configuration))
|
||||
return GemmaModel(configuration)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public struct BaseConfiguration: Codable {
|
||||
let modelType: ModelType
|
||||
|
||||
public struct Quantization: Codable {
|
||||
public init(groupSize: Int, bits: Int) {
|
||||
self.groupSize = groupSize
|
||||
self.bits = bits
|
||||
}
|
||||
|
||||
let groupSize: Int
|
||||
let bits: Int
|
||||
|
||||
enum CodingKeys: String, CodingKey {
|
||||
case groupSize = "group_size"
|
||||
case bits = "bits"
|
||||
}
|
||||
}
|
||||
|
||||
var quantization: Quantization?
|
||||
|
||||
enum CodingKeys: String, CodingKey {
|
||||
case modelType = "model_type"
|
||||
case quantization
|
||||
}
|
||||
}
|
||||
273
Libraries/LLM/Gemma.swift
Normal file
273
Libraries/LLM/Gemma.swift
Normal file
@@ -0,0 +1,273 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import Foundation
|
||||
import MLX
|
||||
import MLXNN
|
||||
|
||||
// port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/gemma.py
|
||||
|
||||
// specialized norm for gemma
|
||||
private class RMSNorm: Module, UnaryLayer {
|
||||
|
||||
let weight: MLXArray
|
||||
let eps: Float
|
||||
|
||||
public init(dimensions: Int, eps: Float = 1e-5) {
|
||||
self.weight = MLXArray.ones([dimensions])
|
||||
self.eps = eps
|
||||
super.init()
|
||||
}
|
||||
|
||||
func norm(_ x: MLXArray) -> MLXArray {
|
||||
let S = 1.0 / sqrt(Float(x.dim(-1)))
|
||||
|
||||
let n = (x * S).square().sum(axis: -1, keepDims: true)
|
||||
return rsqrt(n + eps)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
let output = norm(x.asType(Float.self)).asType(x.dtype)
|
||||
return (1 + weight) * output
|
||||
}
|
||||
}
|
||||
|
||||
private class Attention: Module {
|
||||
|
||||
let args: GemmaConfiguration
|
||||
let repeats: Int
|
||||
let scale: Float
|
||||
|
||||
@ModuleInfo(key: "q_proj") var wq: Linear
|
||||
@ModuleInfo(key: "k_proj") var wk: Linear
|
||||
@ModuleInfo(key: "v_proj") var wv: Linear
|
||||
@ModuleInfo(key: "o_proj") var wo: Linear
|
||||
|
||||
let rope: RoPE
|
||||
|
||||
public init(_ args: GemmaConfiguration) {
|
||||
self.args = args
|
||||
|
||||
let dim = args.hiddenSize
|
||||
let heads = args.attentionHeads
|
||||
let kvHeads = args.kvHeads
|
||||
|
||||
self.repeats = heads / kvHeads
|
||||
|
||||
let headDim = args.headDimensions
|
||||
self.scale = pow(Float(headDim), -0.5)
|
||||
|
||||
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: false)
|
||||
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
||||
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
||||
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
|
||||
|
||||
self.rope = RoPE(
|
||||
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
let (B, L) = (x.dim(0), x.dim(1))
|
||||
|
||||
var queries = wq(x)
|
||||
var keys = wk(x)
|
||||
var values = wv(x)
|
||||
|
||||
// prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
|
||||
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
||||
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
||||
|
||||
if repeats > 1 {
|
||||
keys = MLXArray.repeat(keys, count: repeats, axis: 1)
|
||||
values = MLXArray.repeat(values, count: repeats, axis: 1)
|
||||
}
|
||||
|
||||
if let (keyCache, valueCache) = cache {
|
||||
queries = rope(queries, offset: keyCache.dim(2))
|
||||
keys = rope(keys, offset: keyCache.dim(2))
|
||||
keys = concatenated([keyCache, keys], axis: 2)
|
||||
values = concatenated([valueCache, values], axis: 2)
|
||||
} else {
|
||||
queries = rope(queries)
|
||||
keys = rope(keys)
|
||||
}
|
||||
|
||||
var scores = (queries * self.scale).matmul(keys.transposed(0, 1, 3, 2))
|
||||
if let mask {
|
||||
scores = scores + mask
|
||||
}
|
||||
|
||||
scores = softMax(scores.asType(.float32), axis: -1).asType(scores.dtype)
|
||||
|
||||
let output = matmul(scores, values).transposed(0, 2, 1, 3).reshaped(B, L, -1)
|
||||
|
||||
return (wo(output), (keys, values))
|
||||
}
|
||||
}
|
||||
|
||||
private class MLP: Module, UnaryLayer {
|
||||
|
||||
@ModuleInfo(key: "gate_proj") var gate: Linear
|
||||
@ModuleInfo(key: "down_proj") var down: Linear
|
||||
@ModuleInfo(key: "up_proj") var up: Linear
|
||||
|
||||
public init(dimensions: Int, hiddenDimensions: Int) {
|
||||
self._gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
||||
self._down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
|
||||
self._up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
down(gelu(gate(x)) * up(x))
|
||||
}
|
||||
}
|
||||
|
||||
private class TransformerBlock: Module {
|
||||
|
||||
@ModuleInfo(key: "self_attn") var attention: Attention
|
||||
let mlp: MLP
|
||||
|
||||
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
|
||||
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
|
||||
|
||||
public init(_ args: GemmaConfiguration) {
|
||||
self._attention.wrappedValue = Attention(args)
|
||||
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
|
||||
self._inputLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
self._postAttentionLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
|
||||
let h = x + r
|
||||
r = mlp(postAttentionLayerNorm(h))
|
||||
let out = h + r
|
||||
return (out, cache)
|
||||
}
|
||||
}
|
||||
|
||||
public class GemmaModelInner: Module {
|
||||
|
||||
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
|
||||
|
||||
fileprivate let layers: [TransformerBlock]
|
||||
fileprivate let norm: RMSNorm
|
||||
|
||||
let hiddenScale: Float
|
||||
|
||||
public init(_ args: GemmaConfiguration) {
|
||||
precondition(args.vocabularySize > 0)
|
||||
|
||||
self._embedTokens.wrappedValue = Embedding(
|
||||
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
|
||||
|
||||
self.hiddenScale = pow(Float(args.hiddenSize), 0.5)
|
||||
|
||||
self.layers = (0 ..< args.hiddenLayers)
|
||||
.map { _ in
|
||||
TransformerBlock(args)
|
||||
}
|
||||
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
var h = embedTokens(inputs)
|
||||
h = h * hiddenScale
|
||||
|
||||
var mask: MLXArray? = nil
|
||||
if h.dim(1) > 1 {
|
||||
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
|
||||
mask = mask?.asType(h.dtype)
|
||||
}
|
||||
|
||||
var newCache = [(MLXArray, MLXArray)]()
|
||||
|
||||
for (i, layer) in layers.enumerated() {
|
||||
var cacheUpdate: (MLXArray, MLXArray)
|
||||
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
|
||||
newCache.append(cacheUpdate)
|
||||
}
|
||||
|
||||
return (norm(h), newCache)
|
||||
}
|
||||
}
|
||||
|
||||
public class GemmaModel: Module, LLMModel {
|
||||
|
||||
let model: GemmaModelInner
|
||||
|
||||
public init(_ args: GemmaConfiguration) {
|
||||
self.model = GemmaModelInner(args)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
var (out, cache) = model(inputs, cache: cache)
|
||||
out = matmul(out, model.embedTokens.weight.T)
|
||||
return (out, cache)
|
||||
}
|
||||
}
|
||||
|
||||
public struct GemmaConfiguration: Codable {
|
||||
|
||||
var hiddenSize: Int
|
||||
var hiddenLayers: Int
|
||||
var intermediateSize: Int
|
||||
var attentionHeads: Int
|
||||
var headDimensions: Int
|
||||
var rmsNormEps: Float
|
||||
var vocabularySize: Int
|
||||
var kvHeads: Int
|
||||
var ropeTheta: Float = 10_000
|
||||
var ropeTraditional: Bool = false
|
||||
|
||||
enum CodingKeys: String, CodingKey {
|
||||
case hiddenSize = "hidden_size"
|
||||
case hiddenLayers = "num_hidden_layers"
|
||||
case intermediateSize = "intermediate_size"
|
||||
case attentionHeads = "num_attention_heads"
|
||||
case headDimensions = "head_dim"
|
||||
case rmsNormEps = "rms_norm_eps"
|
||||
case vocabularySize = "vocab_size"
|
||||
case kvHeads = "num_key_value_heads"
|
||||
case ropeTheta = "rope_theta"
|
||||
case ropeTraditional = "rope_traditional"
|
||||
}
|
||||
|
||||
public init(from decoder: Decoder) throws {
|
||||
// custom implementation to handle optional keys with required values
|
||||
let container: KeyedDecodingContainer<CodingKeys> = try decoder.container(
|
||||
keyedBy: CodingKeys.self)
|
||||
|
||||
self.hiddenSize = try container.decode(
|
||||
Int.self, forKey: CodingKeys.hiddenSize)
|
||||
self.hiddenLayers = try container.decode(
|
||||
Int.self, forKey: CodingKeys.hiddenLayers)
|
||||
self.intermediateSize = try container.decode(
|
||||
Int.self, forKey: CodingKeys.intermediateSize)
|
||||
self.attentionHeads = try container.decode(
|
||||
Int.self, forKey: CodingKeys.attentionHeads)
|
||||
self.headDimensions = try container.decode(
|
||||
Int.self, forKey: CodingKeys.headDimensions)
|
||||
self.rmsNormEps = try container.decode(
|
||||
Float.self, forKey: CodingKeys.rmsNormEps)
|
||||
self.vocabularySize = try container.decode(
|
||||
Int.self, forKey: CodingKeys.vocabularySize)
|
||||
self.kvHeads = try container.decode(Int.self, forKey: CodingKeys.kvHeads)
|
||||
self.ropeTheta =
|
||||
try container.decodeIfPresent(Float.self, forKey: CodingKeys.ropeTheta)
|
||||
?? 10_000
|
||||
self.ropeTraditional =
|
||||
try container.decodeIfPresent(
|
||||
Bool.self, forKey: CodingKeys.ropeTraditional) ?? false
|
||||
}
|
||||
}
|
||||
1
Libraries/LLM/LLM.h
Normal file
1
Libraries/LLM/LLM.h
Normal file
@@ -0,0 +1 @@
|
||||
|
||||
12
Libraries/LLM/LLMModel.swift
Normal file
12
Libraries/LLM/LLMModel.swift
Normal file
@@ -0,0 +1,12 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import Foundation
|
||||
import MLX
|
||||
import MLXNN
|
||||
|
||||
// Interface for all LLM Models
|
||||
public protocol LLMModel: Module {
|
||||
func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
)
|
||||
}
|
||||
263
Libraries/LLM/Llama.swift
Normal file
263
Libraries/LLM/Llama.swift
Normal file
@@ -0,0 +1,263 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import Foundation
|
||||
import MLX
|
||||
import MLXNN
|
||||
|
||||
// port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/llama.py
|
||||
|
||||
private class Attention: Module {
|
||||
|
||||
let args: LlamaConfiguration
|
||||
let repeats: Int
|
||||
let scale: Float
|
||||
|
||||
@ModuleInfo(key: "q_proj") var wq: Linear
|
||||
@ModuleInfo(key: "k_proj") var wk: Linear
|
||||
@ModuleInfo(key: "v_proj") var wv: Linear
|
||||
@ModuleInfo(key: "o_proj") var wo: Linear
|
||||
|
||||
let rope: RoPE
|
||||
|
||||
public init(_ args: LlamaConfiguration) {
|
||||
self.args = args
|
||||
|
||||
let dim = args.hiddenSize
|
||||
let heads = args.attentionHeads
|
||||
let kvHeads = args.kvHeads
|
||||
|
||||
self.repeats = heads / kvHeads
|
||||
|
||||
let headDim = args.hiddenSize / heads
|
||||
self.scale = pow(Float(headDim), -0.5)
|
||||
|
||||
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: false)
|
||||
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
||||
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
||||
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
|
||||
|
||||
let ropeScale: Float
|
||||
if let ropeScaling = args.ropeScaling, ropeScaling["type"] == .string("linear"),
|
||||
let factor = ropeScaling["factor"]
|
||||
{
|
||||
switch factor {
|
||||
case .string:
|
||||
fatalError("ropeScaling.factor must be a float")
|
||||
case .float(let v):
|
||||
ropeScale = 1 / v
|
||||
}
|
||||
} else {
|
||||
ropeScale = 1
|
||||
}
|
||||
|
||||
self.rope = RoPE(
|
||||
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta,
|
||||
scale: ropeScale)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
let (B, L) = (x.dim(0), x.dim(1))
|
||||
|
||||
var queries = wq(x)
|
||||
var keys = wk(x)
|
||||
var values = wv(x)
|
||||
|
||||
// prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
|
||||
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
||||
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
||||
|
||||
if repeats > 1 {
|
||||
keys = MLXArray.repeat(keys, count: repeats, axis: 1)
|
||||
values = MLXArray.repeat(values, count: repeats, axis: 1)
|
||||
}
|
||||
|
||||
if let (keyCache, valueCache) = cache {
|
||||
queries = rope(queries, offset: keyCache.dim(2))
|
||||
keys = rope(keys, offset: keyCache.dim(2))
|
||||
keys = concatenated([keyCache, keys], axis: 2)
|
||||
values = concatenated([valueCache, values], axis: 2)
|
||||
} else {
|
||||
queries = rope(queries)
|
||||
keys = rope(keys)
|
||||
}
|
||||
|
||||
var scores = (queries * self.scale).matmul(keys.transposed(0, 1, 3, 2))
|
||||
if let mask {
|
||||
scores = scores + mask
|
||||
}
|
||||
|
||||
scores = softMax(scores.asType(.float32), axis: -1).asType(scores.dtype)
|
||||
|
||||
let output = matmul(scores, values).transposed(0, 2, 1, 3).reshaped(B, L, -1)
|
||||
|
||||
return (wo(output), (keys, values))
|
||||
}
|
||||
}
|
||||
|
||||
private class MLP: Module, UnaryLayer {
|
||||
|
||||
@ModuleInfo(key: "gate_proj") var gate: Linear
|
||||
@ModuleInfo(key: "down_proj") var down: Linear
|
||||
@ModuleInfo(key: "up_proj") var up: Linear
|
||||
|
||||
public init(dimensions: Int, hiddenDimensions: Int) {
|
||||
self._gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
||||
self._down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
|
||||
self._up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
down(silu(gate(x)) * up(x))
|
||||
}
|
||||
}
|
||||
|
||||
private class TransformerBlock: Module {
|
||||
|
||||
@ModuleInfo(key: "self_attn") var attention: Attention
|
||||
let mlp: MLP
|
||||
|
||||
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
|
||||
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
|
||||
|
||||
public init(_ args: LlamaConfiguration) {
|
||||
self._attention.wrappedValue = Attention(args)
|
||||
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
|
||||
self._inputLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
self._postAttentionLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
|
||||
let h = x + r
|
||||
r = mlp(postAttentionLayerNorm(h))
|
||||
let out = h + r
|
||||
return (out, cache)
|
||||
}
|
||||
}
|
||||
|
||||
public class LlamaModelInner: Module {
|
||||
|
||||
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
|
||||
|
||||
fileprivate let layers: [TransformerBlock]
|
||||
let norm: RMSNorm
|
||||
|
||||
public init(_ args: LlamaConfiguration) {
|
||||
precondition(args.vocabularySize > 0)
|
||||
|
||||
self._embedTokens.wrappedValue = Embedding(
|
||||
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
|
||||
|
||||
self.layers = (0 ..< args.hiddenLayers)
|
||||
.map { _ in
|
||||
TransformerBlock(args)
|
||||
}
|
||||
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
var h = embedTokens(inputs)
|
||||
|
||||
var mask: MLXArray? = nil
|
||||
if h.dim(1) > 1 {
|
||||
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
|
||||
mask = mask?.asType(h.dtype)
|
||||
}
|
||||
|
||||
var newCache = [(MLXArray, MLXArray)]()
|
||||
|
||||
for (i, layer) in layers.enumerated() {
|
||||
var cacheUpdate: (MLXArray, MLXArray)
|
||||
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
|
||||
newCache.append(cacheUpdate)
|
||||
}
|
||||
|
||||
return (norm(h), newCache)
|
||||
}
|
||||
}
|
||||
|
||||
public class LlamaModel: Module, LLMModel {
|
||||
|
||||
let model: LlamaModelInner
|
||||
|
||||
@ModuleInfo(key: "lm_head") var lmHead: Linear
|
||||
|
||||
public init(_ args: LlamaConfiguration) {
|
||||
self.model = LlamaModelInner(args)
|
||||
self._lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: false)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
let (out, cache) = model(inputs, cache: cache)
|
||||
return (lmHead(out), cache)
|
||||
}
|
||||
}
|
||||
|
||||
public struct LlamaConfiguration: Codable {
|
||||
|
||||
var hiddenSize: Int
|
||||
var hiddenLayers: Int
|
||||
var intermediateSize: Int
|
||||
var attentionHeads: Int
|
||||
var rmsNormEps: Float
|
||||
var vocabularySize: Int
|
||||
var kvHeads: Int
|
||||
var ropeTheta: Float = 10_000
|
||||
var ropeTraditional: Bool = false
|
||||
var ropeScaling: [String: StringOrNumber]? = nil
|
||||
|
||||
enum CodingKeys: String, CodingKey {
|
||||
case hiddenSize = "hidden_size"
|
||||
case hiddenLayers = "num_hidden_layers"
|
||||
case intermediateSize = "intermediate_size"
|
||||
case attentionHeads = "num_attention_heads"
|
||||
case rmsNormEps = "rms_norm_eps"
|
||||
case vocabularySize = "vocab_size"
|
||||
case kvHeads = "num_key_value_heads"
|
||||
case ropeTheta = "rope_theta"
|
||||
case ropeTraditional = "rope_traditional"
|
||||
case ropeScaling = "rope_scaling"
|
||||
}
|
||||
|
||||
public init(from decoder: Decoder) throws {
|
||||
// custom implementation to handle optional keys with required values
|
||||
let container: KeyedDecodingContainer<LlamaConfiguration.CodingKeys> =
|
||||
try decoder.container(
|
||||
keyedBy: LlamaConfiguration.CodingKeys.self)
|
||||
|
||||
self.hiddenSize = try container.decode(
|
||||
Int.self, forKey: LlamaConfiguration.CodingKeys.hiddenSize)
|
||||
self.hiddenLayers = try container.decode(
|
||||
Int.self, forKey: LlamaConfiguration.CodingKeys.hiddenLayers)
|
||||
self.intermediateSize = try container.decode(
|
||||
Int.self, forKey: LlamaConfiguration.CodingKeys.intermediateSize)
|
||||
self.attentionHeads = try container.decode(
|
||||
Int.self, forKey: LlamaConfiguration.CodingKeys.attentionHeads)
|
||||
self.rmsNormEps = try container.decode(
|
||||
Float.self, forKey: LlamaConfiguration.CodingKeys.rmsNormEps)
|
||||
self.vocabularySize = try container.decode(
|
||||
Int.self, forKey: LlamaConfiguration.CodingKeys.vocabularySize)
|
||||
self.kvHeads = try container.decode(Int.self, forKey: LlamaConfiguration.CodingKeys.kvHeads)
|
||||
self.ropeTheta =
|
||||
try container.decodeIfPresent(
|
||||
Float.self, forKey: LlamaConfiguration.CodingKeys.ropeTheta)
|
||||
?? 10_000
|
||||
self.ropeTraditional =
|
||||
try container.decodeIfPresent(
|
||||
Bool.self, forKey: LlamaConfiguration.CodingKeys.ropeTraditional) ?? false
|
||||
self.ropeScaling = try container.decodeIfPresent(
|
||||
[String: StringOrNumber].self, forKey: LlamaConfiguration.CodingKeys.ropeScaling)
|
||||
|
||||
}
|
||||
}
|
||||
302
Libraries/LLM/Phi.swift
Normal file
302
Libraries/LLM/Phi.swift
Normal file
@@ -0,0 +1,302 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import Foundation
|
||||
import MLX
|
||||
import MLXNN
|
||||
|
||||
// https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/phi.py
|
||||
|
||||
// TODO: remove once open classes are in
|
||||
|
||||
public class MLXLayerNorm: Module, UnaryLayer {
|
||||
|
||||
let dimensions: Int
|
||||
let eps: Float
|
||||
|
||||
let weight: MLXArray?
|
||||
let bias: MLXArray?
|
||||
|
||||
/// Applies layer normalization [1] on the inputs.
|
||||
///
|
||||
/// See [LayerNorm python docs](https://ml-explore.github.io/mlx/build/html/python/nn/_autosummary/mlx.nn.LayerNorm.html) for more information.
|
||||
///
|
||||
/// ### References
|
||||
/// 1. [https://arxiv.org/abs/1607.06450](https://arxiv.org/abs/1607.06450)
|
||||
///
|
||||
/// - Parameters:
|
||||
/// - dimensions: number of features in the input
|
||||
/// - eps: value added to the denominator for numerical stability
|
||||
/// - affine: if `true` adds a trainable `weight` and `bias`
|
||||
public init(dimensions: Int, eps: Float = 1e-5, affine: Bool = true) {
|
||||
self.dimensions = dimensions
|
||||
self.eps = eps
|
||||
|
||||
if affine {
|
||||
self.weight = MLXArray.ones([dimensions])
|
||||
self.bias = MLXArray.zeros([dimensions])
|
||||
} else {
|
||||
self.weight = nil
|
||||
self.bias = nil
|
||||
}
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
let means = mean(x, axis: -1, keepDims: true)
|
||||
let variance = variance(x, axis: -1, keepDims: true)
|
||||
let x = (x - means) * rsqrt(variance + eps)
|
||||
|
||||
if let weight, let bias {
|
||||
return weight * x + bias
|
||||
} else {
|
||||
return x
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private class LayerNorm: MLXLayerNorm {
|
||||
override func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
super.callAsFunction(x.asType(Float.self)).asType(x.dtype)
|
||||
}
|
||||
}
|
||||
|
||||
private class PhiAttention: Module {
|
||||
|
||||
let args: PhiConfiguration
|
||||
let heads: Int
|
||||
let headDim: Int
|
||||
let repeats: Int
|
||||
|
||||
@ModuleInfo(key: "q_proj") var wq: Linear
|
||||
@ModuleInfo(key: "k_proj") var wk: Linear
|
||||
@ModuleInfo(key: "v_proj") var wv: Linear
|
||||
@ModuleInfo(key: "dense") var dense: Linear
|
||||
|
||||
let rope: RoPE
|
||||
|
||||
public init(_ args: PhiConfiguration) {
|
||||
self.args = args
|
||||
|
||||
let hiddenSize = args.hiddenSize
|
||||
self.heads = args.attentionHeads
|
||||
self.headDim = args.hiddenSize / heads
|
||||
let kvHeads = args.kvHeads
|
||||
self.repeats = heads / kvHeads
|
||||
|
||||
if headDim * heads != hiddenSize {
|
||||
fatalError("hidden_size must be divisible by num_heads")
|
||||
}
|
||||
|
||||
self._wq.wrappedValue = Linear(hiddenSize, heads * headDim, bias: true)
|
||||
self._wk.wrappedValue = Linear(hiddenSize, kvHeads * headDim, bias: true)
|
||||
self._wv.wrappedValue = Linear(hiddenSize, kvHeads * headDim, bias: true)
|
||||
self._dense.wrappedValue = Linear(heads * headDim, hiddenSize, bias: true)
|
||||
|
||||
self.rope = RoPE(
|
||||
dimensions: Int(args.partialRotaryFactor * Float(headDim)), traditional: false,
|
||||
base: args.ropeTheta)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
let (B, L) = (x.dim(0), x.dim(1))
|
||||
|
||||
var queries = wq(x)
|
||||
var keys = wk(x)
|
||||
var values = wv(x)
|
||||
|
||||
// prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshaped(B, L, heads, headDim).transposed(0, 2, 1, 3)
|
||||
keys = keys.reshaped(B, L, args.kvHeads, headDim).transposed(0, 2, 1, 3)
|
||||
values = values.reshaped(B, L, args.kvHeads, headDim).transposed(0, 2, 1, 3)
|
||||
|
||||
if repeats > 1 {
|
||||
keys = MLXArray.repeat(keys, count: repeats, axis: 1)
|
||||
values = MLXArray.repeat(values, count: repeats, axis: 1)
|
||||
}
|
||||
|
||||
// Add RoPE to the queries and keys and combine them with the cache
|
||||
if let (keyCache, valueCache) = cache {
|
||||
queries = rope(queries, offset: keyCache.dim(2))
|
||||
keys = rope(keys, offset: keyCache.dim(2))
|
||||
keys = concatenated([keyCache, keys], axis: 2)
|
||||
values = concatenated([valueCache, values], axis: 2)
|
||||
} else {
|
||||
queries = rope(queries)
|
||||
keys = rope(keys)
|
||||
}
|
||||
|
||||
queries = queries.asType(Float.self)
|
||||
keys = keys.asType(Float.self)
|
||||
|
||||
// Finally perform the attention computation
|
||||
let scale = sqrt(1 / Float(queries.dim(-1)))
|
||||
var scores = (queries * scale).matmul(keys.transposed(0, 1, 3, 2))
|
||||
if let mask {
|
||||
scores = scores + mask
|
||||
}
|
||||
|
||||
scores = softMax(scores, axis: -1).asType(values.dtype)
|
||||
let valuesHat = matmul(scores, values).transposed(0, 2, 1, 3).reshaped(B, L, -1)
|
||||
|
||||
return (dense(valuesHat), (keys, values))
|
||||
}
|
||||
}
|
||||
|
||||
private class PhiMLP: Module, UnaryLayer {
|
||||
|
||||
@ModuleInfo var fc1: Linear
|
||||
@ModuleInfo var fc2: Linear
|
||||
@ModuleInfo var act: GELU
|
||||
|
||||
public init(_ config: PhiConfiguration) {
|
||||
self.fc1 = Linear(config.hiddenSize, config.intermediateSize)
|
||||
self.fc2 = Linear(config.intermediateSize, config.hiddenSize)
|
||||
self.act = GELU(approximation: .precise)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
fc2(act(fc1(x)))
|
||||
}
|
||||
}
|
||||
|
||||
private class PhiDecoderLayer: Module {
|
||||
|
||||
@ModuleInfo(key: "self_attn") var selfAttention: PhiAttention
|
||||
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: LayerNorm
|
||||
var mlp: PhiMLP
|
||||
|
||||
public init(_ config: PhiConfiguration) {
|
||||
self._selfAttention.wrappedValue = PhiAttention(config)
|
||||
self._inputLayerNorm.wrappedValue = LayerNorm(
|
||||
dimensions: config.hiddenSize, eps: config.layerNormEps)
|
||||
self.mlp = PhiMLP(config)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
let h = inputLayerNorm(x)
|
||||
let (attentionH, cache) = selfAttention(h, mask: mask, cache: cache)
|
||||
let ffH = mlp(h)
|
||||
return (attentionH + ffH + x, cache)
|
||||
}
|
||||
}
|
||||
|
||||
private class PhiModelInner: Module {
|
||||
|
||||
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
|
||||
|
||||
@ModuleInfo var layers: [PhiDecoderLayer]
|
||||
@ModuleInfo(key: "final_layernorm") var finalLayerNorm: LayerNorm
|
||||
|
||||
public init(_ args: PhiConfiguration) {
|
||||
self._embedTokens.wrappedValue = Embedding(
|
||||
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
|
||||
|
||||
self.layers = (0 ..< args.hiddenLayers)
|
||||
.map { _ in
|
||||
PhiDecoderLayer(args)
|
||||
}
|
||||
self._finalLayerNorm.wrappedValue = LayerNorm(
|
||||
dimensions: args.hiddenSize, eps: args.layerNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: [(MLXArray, MLXArray)]? = nil
|
||||
) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
var x = embedTokens(x)
|
||||
|
||||
var newCache = [(MLXArray, MLXArray)]()
|
||||
|
||||
for (i, layer) in layers.enumerated() {
|
||||
var cacheUpdate: (MLXArray, MLXArray)
|
||||
(x, cacheUpdate) = layer(x, mask: mask, cache: cache?[i])
|
||||
newCache.append(cacheUpdate)
|
||||
}
|
||||
|
||||
return (finalLayerNorm(x), newCache)
|
||||
}
|
||||
}
|
||||
|
||||
public class PhiModel: Module, LLMModel {
|
||||
|
||||
fileprivate let model: PhiModelInner
|
||||
|
||||
@ModuleInfo(key: "lm_head") var lmHead: Linear
|
||||
|
||||
public init(_ args: PhiConfiguration) {
|
||||
self.model = PhiModelInner(args)
|
||||
self._lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: true)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
var mask: MLXArray? = nil
|
||||
if x.dim(1) > 1 {
|
||||
mask = MultiHeadAttention.createAdditiveCausalMask(x.dim(1))
|
||||
mask = mask?.asType(x.dtype)
|
||||
}
|
||||
|
||||
let (y, cache) = model(x, mask: mask, cache: cache)
|
||||
return (lmHead(y), cache)
|
||||
}
|
||||
}
|
||||
|
||||
public struct PhiConfiguration: Codable {
|
||||
var maxPositionalEmbeddings = 2048
|
||||
var vocabularySize = 51200
|
||||
var hiddenSize = 2560
|
||||
var attentionHeads = 32
|
||||
var hiddenLayers = 32
|
||||
var kvHeads = 32
|
||||
var partialRotaryFactor: Float = 0.4
|
||||
var intermediateSize = 10240
|
||||
var layerNormEps: Float = 1e-5
|
||||
var ropeTheta: Float = 10_000
|
||||
|
||||
enum CodingKeys: String, CodingKey {
|
||||
case maxPositionalEmbeddings = "max_position_embeddings"
|
||||
case vocabularySize = "vocab_size"
|
||||
case hiddenSize = "hidden_size"
|
||||
case attentionHeads = "num_attention_heads"
|
||||
case hiddenLayers = "num_hidden_layers"
|
||||
case kvHeads = "num_key_value_heads"
|
||||
case partialRotaryFactor = "partial_rotary_factor"
|
||||
case intermediateSize = "intermediate_size"
|
||||
case layerNormEps = "layer_norm_eps"
|
||||
case ropeTheta = "rope_theta"
|
||||
}
|
||||
|
||||
public init(from decoder: Decoder) throws {
|
||||
let container: KeyedDecodingContainer<PhiConfiguration.CodingKeys> = try decoder.container(
|
||||
keyedBy: PhiConfiguration.CodingKeys.self)
|
||||
|
||||
self.maxPositionalEmbeddings = try container.decode(
|
||||
Int.self, forKey: PhiConfiguration.CodingKeys.maxPositionalEmbeddings)
|
||||
self.vocabularySize = try container.decode(
|
||||
Int.self, forKey: PhiConfiguration.CodingKeys.vocabularySize)
|
||||
self.hiddenSize = try container.decode(
|
||||
Int.self, forKey: PhiConfiguration.CodingKeys.hiddenSize)
|
||||
self.attentionHeads = try container.decode(
|
||||
Int.self, forKey: PhiConfiguration.CodingKeys.attentionHeads)
|
||||
self.hiddenLayers = try container.decode(
|
||||
Int.self, forKey: PhiConfiguration.CodingKeys.hiddenLayers)
|
||||
self.kvHeads =
|
||||
try container.decodeIfPresent(Int.self, forKey: PhiConfiguration.CodingKeys.kvHeads)
|
||||
?? attentionHeads
|
||||
self.partialRotaryFactor = try container.decode(
|
||||
Float.self, forKey: PhiConfiguration.CodingKeys.partialRotaryFactor)
|
||||
self.intermediateSize = try container.decode(
|
||||
Int.self, forKey: PhiConfiguration.CodingKeys.intermediateSize)
|
||||
self.layerNormEps = try container.decode(
|
||||
Float.self, forKey: PhiConfiguration.CodingKeys.layerNormEps)
|
||||
self.ropeTheta =
|
||||
try container.decodeIfPresent(Float.self, forKey: PhiConfiguration.CodingKeys.ropeTheta)
|
||||
?? 10_000
|
||||
|
||||
}
|
||||
}
|
||||
11
Libraries/LLM/README.md
Normal file
11
Libraries/LLM/README.md
Normal file
@@ -0,0 +1,11 @@
|
||||
# Llama
|
||||
|
||||
This is a port of the llama model from:
|
||||
|
||||
- https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/llama.py
|
||||
|
||||
You can use this to load models from huggingface, e.g.:
|
||||
|
||||
- https://huggingface.co/mlx-community/Mistral-7B-v0.1-hf-4bit-mlx
|
||||
|
||||
See [llm-tool](../../Tools/llm-tool)
|
||||
110
Libraries/LLM/Util.swift
Normal file
110
Libraries/LLM/Util.swift
Normal file
@@ -0,0 +1,110 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import AsyncAlgorithms
|
||||
import Foundation
|
||||
import Hub
|
||||
import MLX
|
||||
import MLXNN
|
||||
import MLXRandom
|
||||
import Tokenizers
|
||||
|
||||
/// Load and return the model and tokenizer
|
||||
public func load(
|
||||
hub: HubApi = HubApi(), name: String, progressHandler: @escaping (Progress) -> Void = { _ in }
|
||||
) async throws -> (LLMModel, Tokenizer) {
|
||||
// note: this doesn't have a way to pass the HubApi
|
||||
let tokenizer = try await AutoTokenizer.from(pretrained: name)
|
||||
|
||||
// download the model weights and config
|
||||
let repo = Hub.Repo(id: name)
|
||||
let modelFiles = ["config.json", "weights.00.safetensors"]
|
||||
let modelDirectory = try await hub.snapshot(
|
||||
from: repo, matching: modelFiles, progressHandler: progressHandler)
|
||||
|
||||
// create the model (no weights loaded)
|
||||
let configurationURL = modelDirectory.appending(component: "config.json")
|
||||
let baseConfig = try JSONDecoder().decode(
|
||||
BaseConfiguration.self, from: Data(contentsOf: configurationURL))
|
||||
|
||||
let model = try baseConfig.modelType.createModel(configuration: configurationURL)
|
||||
|
||||
// set up the model
|
||||
if let quantization = baseConfig.quantization {
|
||||
QuantizedLinear.quantize(
|
||||
model: model, groupSize: quantization.groupSize, bits: quantization.bits)
|
||||
}
|
||||
|
||||
// apply the loaded weights
|
||||
let weights = try loadArrays(url: modelDirectory.appending(component: "weights.00.safetensors"))
|
||||
let parameters = ModuleParameters.unflattened(weights)
|
||||
try model.update(parameters: parameters, verify: [.all])
|
||||
eval(model.parameters())
|
||||
|
||||
return (model, tokenizer)
|
||||
}
|
||||
|
||||
private func sample(logits: MLXArray, temp: Float) -> MLXArray {
|
||||
if temp == 0 {
|
||||
return argMax(logits, axis: -1)
|
||||
} else {
|
||||
return categorical(logits * (1 / temp))
|
||||
}
|
||||
}
|
||||
|
||||
/// Synchronous generator of tokens.
|
||||
///
|
||||
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py
|
||||
public struct TokenIterator: Sequence, IteratorProtocol {
|
||||
let model: LLMModel
|
||||
let temp: Float
|
||||
|
||||
var y: MLXArray
|
||||
var cache: [(MLXArray, MLXArray)]
|
||||
|
||||
var first = true
|
||||
|
||||
public init(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) {
|
||||
self.model = model
|
||||
self.temp = temp
|
||||
self.y = prompt
|
||||
self.cache = []
|
||||
}
|
||||
|
||||
mutating public func next() -> MLXArray? {
|
||||
var logits: MLXArray
|
||||
(logits, cache) = model(expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
|
||||
y = sample(logits: logits[-1, axis: 1], temp: temp)
|
||||
|
||||
return y
|
||||
}
|
||||
}
|
||||
|
||||
/// Async generator of tokens.
|
||||
///
|
||||
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py.
|
||||
///
|
||||
/// Note that because MLXArray is not thread safe this eval's the result and sends the TokenId back
|
||||
/// to the caller.
|
||||
public func generate(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) -> (
|
||||
Task<Void, Never>, AsyncBufferSequence<AsyncChannel<Int>>
|
||||
) {
|
||||
let channel = AsyncChannel<Int>()
|
||||
let buffer = channel.buffer(policy: .bounded(10))
|
||||
|
||||
let task = Task {
|
||||
var y = prompt
|
||||
var cache = [(MLXArray, MLXArray)]()
|
||||
|
||||
while !Task.isCancelled {
|
||||
var logits: MLXArray
|
||||
(logits, cache) = model(
|
||||
expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
|
||||
y = sample(logits: logits[-1, axis: 1], temp: temp)
|
||||
eval(y)
|
||||
|
||||
await channel.send(y.item(Int.self))
|
||||
}
|
||||
}
|
||||
|
||||
return (task, buffer)
|
||||
}
|
||||
102
Libraries/MNIST/Files.swift
Normal file
102
Libraries/MNIST/Files.swift
Normal file
@@ -0,0 +1,102 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import Foundation
|
||||
import Gzip
|
||||
import MLX
|
||||
|
||||
// based on https://github.com/ml-explore/mlx-examples/blob/main/mnist/mnist.py
|
||||
|
||||
public enum Use: String, Hashable {
|
||||
case test
|
||||
case training
|
||||
}
|
||||
|
||||
public enum DataKind: String, Hashable {
|
||||
case images
|
||||
case labels
|
||||
}
|
||||
|
||||
public struct FileKind: Hashable, CustomStringConvertible {
|
||||
let use: Use
|
||||
let data: DataKind
|
||||
|
||||
public init(_ use: Use, _ data: DataKind) {
|
||||
self.use = use
|
||||
self.data = data
|
||||
}
|
||||
|
||||
public var description: String {
|
||||
"\(use.rawValue)-\(data.rawValue)"
|
||||
}
|
||||
}
|
||||
|
||||
struct LoadInfo {
|
||||
let name: String
|
||||
let offset: Int
|
||||
let convert: (MLXArray) -> MLXArray
|
||||
}
|
||||
|
||||
let baseURL = URL(string: "http://yann.lecun.com/exdb/mnist/")!
|
||||
|
||||
let files = [
|
||||
FileKind(.training, .images): LoadInfo(
|
||||
name: "train-images-idx3-ubyte.gz",
|
||||
offset: 16,
|
||||
convert: {
|
||||
$0.reshaped([-1, 28 * 28]).asType(.float32) / 255.0
|
||||
}),
|
||||
FileKind(.test, .images): LoadInfo(
|
||||
name: "t10k-images-idx3-ubyte.gz",
|
||||
offset: 16,
|
||||
convert: {
|
||||
$0.reshaped([-1, 28 * 28]).asType(.float32) / 255.0
|
||||
}),
|
||||
FileKind(.training, .labels): LoadInfo(
|
||||
name: "train-labels-idx1-ubyte.gz",
|
||||
offset: 8,
|
||||
convert: {
|
||||
$0.asType(.uint32)
|
||||
}),
|
||||
FileKind(.test, .labels): LoadInfo(
|
||||
name: "t10k-labels-idx1-ubyte.gz",
|
||||
offset: 8,
|
||||
convert: {
|
||||
$0.asType(.uint32)
|
||||
}),
|
||||
]
|
||||
|
||||
public func download(into: URL) async throws {
|
||||
for (_, info) in files {
|
||||
let fileURL = into.appending(component: info.name)
|
||||
if !FileManager.default.fileExists(atPath: fileURL.path()) {
|
||||
print("Download: \(info.name)")
|
||||
let url = baseURL.appending(component: info.name)
|
||||
let (data, response) = try await URLSession.shared.data(from: url)
|
||||
|
||||
guard let httpResponse = response as? HTTPURLResponse else {
|
||||
fatalError("Unable to download \(url), not an http response: \(response)")
|
||||
}
|
||||
guard httpResponse.statusCode == 200 else {
|
||||
fatalError("Unable to download \(url): \(httpResponse)")
|
||||
}
|
||||
|
||||
try data.write(to: fileURL)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public func load(from: URL) throws -> [FileKind: MLXArray] {
|
||||
var result = [FileKind: MLXArray]()
|
||||
|
||||
for (key, info) in files {
|
||||
let fileURL = from.appending(component: info.name)
|
||||
let data = try Data(contentsOf: fileURL).gunzipped()
|
||||
|
||||
let array = MLXArray(
|
||||
data.dropFirst(info.offset), [data.count - info.offset], type: UInt8.self)
|
||||
|
||||
result[key] = info.convert(array)
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
1
Libraries/MNIST/MNIST.h
Normal file
1
Libraries/MNIST/MNIST.h
Normal file
@@ -0,0 +1 @@
|
||||
|
||||
73
Libraries/MNIST/MNIST.swift
Normal file
73
Libraries/MNIST/MNIST.swift
Normal file
@@ -0,0 +1,73 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import Foundation
|
||||
import MLX
|
||||
import MLXNN
|
||||
|
||||
// based on https://github.com/ml-explore/mlx-examples/blob/main/mnist/main.py
|
||||
|
||||
public class MLP: Module, UnaryLayer {
|
||||
|
||||
@ModuleInfo var layers: [Linear]
|
||||
|
||||
public init(layers: Int, inputDimensions: Int, hiddenDimensions: Int, outputDimensions: Int) {
|
||||
let layerSizes =
|
||||
[inputDimensions] + Array(repeating: hiddenDimensions, count: layers) + [
|
||||
outputDimensions
|
||||
]
|
||||
|
||||
self.layers = zip(layerSizes.dropLast(), layerSizes.dropFirst())
|
||||
.map {
|
||||
Linear($0, $1)
|
||||
}
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
var x = x
|
||||
for l in layers.dropLast() {
|
||||
x = relu(l(x))
|
||||
}
|
||||
return layers.last!(x)
|
||||
}
|
||||
}
|
||||
|
||||
public func loss(model: MLP, x: MLXArray, y: MLXArray) -> MLXArray {
|
||||
crossEntropy(logits: model(x), targets: y, reduction: .mean)
|
||||
}
|
||||
|
||||
public func eval(model: MLP, x: MLXArray, y: MLXArray) -> MLXArray {
|
||||
mean(argMax(model(x), axis: 1) .== y)
|
||||
}
|
||||
|
||||
private struct BatchSequence: Sequence, IteratorProtocol {
|
||||
|
||||
let batchSize: Int
|
||||
let x: MLXArray
|
||||
let y: MLXArray
|
||||
|
||||
let indexes: MLXArray
|
||||
var index = 0
|
||||
|
||||
init(batchSize: Int, x: MLXArray, y: MLXArray, using generator: inout any RandomNumberGenerator)
|
||||
{
|
||||
self.batchSize = batchSize
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.indexes = MLXArray(Array(0 ..< y.size).shuffled(using: &generator))
|
||||
}
|
||||
|
||||
mutating func next() -> (MLXArray, MLXArray)? {
|
||||
guard index < y.size else { return nil }
|
||||
|
||||
let range = index ..< Swift.min(index + batchSize, y.size)
|
||||
index += batchSize
|
||||
let ids = indexes[range]
|
||||
return (x[ids], y[ids])
|
||||
}
|
||||
}
|
||||
|
||||
public func iterateBatches(
|
||||
batchSize: Int, x: MLXArray, y: MLXArray, using generator: inout any RandomNumberGenerator
|
||||
) -> some Sequence<(MLXArray, MLXArray)> {
|
||||
BatchSequence(batchSize: batchSize, x: x, y: y, using: &generator)
|
||||
}
|
||||
13
Libraries/MNIST/README.md
Normal file
13
Libraries/MNIST/README.md
Normal file
@@ -0,0 +1,13 @@
|
||||
# MNIST
|
||||
|
||||
This is a port of the MNIST model and training code from:
|
||||
|
||||
- https://github.com/ml-explore/mlx-examples/blob/main/mnist
|
||||
|
||||
It provides code to:
|
||||
|
||||
- download the test/train data
|
||||
- provides the MNIST model (MLP)
|
||||
- some functions to shuffle and batch the data
|
||||
|
||||
See [mnist-tool](../../Tools/mnist-tool) for an example of how to run this. The training loop also lives there.
|
||||
30
Libraries/MNIST/Random.swift
Normal file
30
Libraries/MNIST/Random.swift
Normal file
@@ -0,0 +1,30 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import Foundation
|
||||
|
||||
// From https://github.com/apple/swift/blob/cb0fb1ea051631219c0b944b84c78571448d58c2/benchmark/utils/TestsUtils.swift#L254
|
||||
//
|
||||
// This is just a seedable RandomNumberGenerator for shuffle()
|
||||
|
||||
// This is a fixed-increment version of Java 8's SplittableRandom generator.
|
||||
// It is a very fast generator passing BigCrush, with 64 bits of state.
|
||||
// See http://dx.doi.org/10.1145/2714064.2660195 and
|
||||
// http://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html
|
||||
//
|
||||
// Derived from public domain C implementation by Sebastiano Vigna
|
||||
// See http://xoshiro.di.unimi.it/splitmix64.c
|
||||
public struct SplitMix64: RandomNumberGenerator {
|
||||
private var state: UInt64
|
||||
|
||||
public init(seed: UInt64) {
|
||||
self.state = seed
|
||||
}
|
||||
|
||||
public mutating func next() -> UInt64 {
|
||||
self.state &+= 0x9e37_79b9_7f4a_7c15
|
||||
var z: UInt64 = self.state
|
||||
z = (z ^ (z &>> 30)) &* 0xbf58_476d_1ce4_e5b9
|
||||
z = (z ^ (z &>> 27)) &* 0x94d0_49bb_1331_11eb
|
||||
return z ^ (z &>> 31)
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user