fix for #2 -- CodeLlama crashes

- add replacement tokenizer class for unknown tokenizers
- fix quantization for models that don't have lm_head quantized

Requires https://github.com/ml-explore/mlx-swift/pull/28
This commit is contained in:
David Koski
2024-02-26 10:38:05 -08:00
parent 8870b0d386
commit bb7bacc077
5 changed files with 80 additions and 54 deletions

View File

@@ -8,12 +8,16 @@ import MLXNN
import MLXRandom
import Tokenizers
struct LLMError: Error {
let message: String
}
/// Load and return the model and tokenizer
public func load(
hub: HubApi = HubApi(), name: String, progressHandler: @escaping (Progress) -> Void = { _ in }
) async throws -> (LLMModel, Tokenizer) {
// note: this doesn't have a way to pass the HubApi
let tokenizer = try await AutoTokenizer.from(pretrained: name)
let tokenizer = try await loadTokenizer(name: name)
// download the model weights and config
let repo = Hub.Repo(id: name)
@@ -28,21 +32,80 @@ public func load(
let model = try baseConfig.modelType.createModel(configuration: configurationURL)
// set up the model
// load the weights
let weights = try loadArrays(url: modelDirectory.appending(component: "weights.00.safetensors"))
// quantize if needed
if let quantization = baseConfig.quantization {
QuantizedLinear.quantize(
model: model, groupSize: quantization.groupSize, bits: quantization.bits)
quantizeIfNeeded(model: model, weights: weights, quantization: quantization)
}
// apply the loaded weights
let weights = try loadArrays(url: modelDirectory.appending(component: "weights.00.safetensors"))
let parameters = ModuleParameters.unflattened(weights)
try model.update(parameters: parameters, verify: [.all])
eval(model.parameters())
eval(model)
return (model, tokenizer)
}
public func loadTokenizer(name: String) async throws -> Tokenizer {
// from AutoTokenizer.from() -- this lets us override parts of the configuration
let config = LanguageModelConfigurationFromHub(modelName: name)
guard var tokenizerConfig = try await config.tokenizerConfig else {
throw LLMError(message: "missing config")
}
let tokenizerData = try await config.tokenizerData
if let tokenizerClass = tokenizerConfig.tokenizerClass?.stringValue,
let replacement = replacementTokenizers[tokenizerClass]
{
var dictionary = tokenizerConfig.dictionary
dictionary["tokenizer_class"] = replacement
tokenizerConfig = Config(dictionary)
}
return try PreTrainedTokenizer(tokenizerConfig: tokenizerConfig, tokenizerData: tokenizerData)
}
/// overrides for TokenizerModel/knownTokenizers
let replacementTokenizers = [
"CodeLlamaTokenizer": "LlamaTokenizer"
]
private func quantizeIfNeeded(
model: LLMModel, weights: [String: MLXArray], quantization: BaseConfiguration.Quantization
) {
func linearPredicate(layer: Module) -> Bool {
if let layer = layer as? Linear {
// avoid quantizing gate layers, otherwise we have to re-quant and upload all the mixtral models
return layer.weight.dim(0) != 8
}
return false
}
var predicate = linearPredicate(layer:)
// for legacy models that don't have lm_head quant due to non-32 dims
if weights["lm_head.scales"] == nil {
let vocabularySize = model.vocabularySize
func vocabularySizePredicate(layer: Module) -> Bool {
if let layer = layer as? Linear {
return layer.weight.dim(0) != 8 && layer.weight.dim(0) != vocabularySize
}
return false
}
predicate = vocabularySizePredicate(layer:)
}
QuantizedLinear.quantize(
model: model, groupSize: quantization.groupSize, bits: quantization.bits,
predicate: predicate)
}
private func sample(logits: MLXArray, temp: Float) -> MLXArray {
if temp == 0 {
return argMax(logits, axis: -1)