partial fix for #1

- handle loading models with different names for the safetensors files (gemma)
- handle merge tokens that can't be split
- organize code into Load/Evaluate
This commit is contained in:
David Koski
2024-02-26 13:23:21 -08:00
parent d666271ede
commit c86d1c195e
3 changed files with 138 additions and 74 deletions

View File

@@ -0,0 +1,72 @@
// Copyright © 2024 Apple Inc.
import AsyncAlgorithms
import Foundation
import MLX
import MLXRandom
private func sample(logits: MLXArray, temp: Float) -> MLXArray {
if temp == 0 {
return argMax(logits, axis: -1)
} else {
return categorical(logits * (1 / temp))
}
}
/// Synchronous generator of tokens.
///
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py
public struct TokenIterator: Sequence, IteratorProtocol {
let model: LLMModel
let temp: Float
var y: MLXArray
var cache: [(MLXArray, MLXArray)]
var first = true
public init(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) {
self.model = model
self.temp = temp
self.y = prompt
self.cache = []
}
mutating public func next() -> MLXArray? {
var logits: MLXArray
(logits, cache) = model(expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
y = sample(logits: logits[-1, axis: 1], temp: temp)
return y
}
}
/// Async generator of tokens.
///
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py.
///
/// Note that because MLXArray is not thread safe this eval's the result and sends the TokenId back
/// to the caller.
public func generate(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) -> (
Task<Void, Never>, AsyncBufferSequence<AsyncChannel<Int>>
) {
let channel = AsyncChannel<Int>()
let buffer = channel.buffer(policy: .bounded(10))
let task = Task {
var y = prompt
var cache = [(MLXArray, MLXArray)]()
while !Task.isCancelled {
var logits: MLXArray
(logits, cache) = model(
expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
y = sample(logits: logits[-1, axis: 1], temp: temp)
eval(y)
await channel.send(y.item(Int.self))
}
}
return (task, buffer)
}

View File

@@ -21,7 +21,7 @@ public func load(
// download the model weights and config
let repo = Hub.Repo(id: name)
let modelFiles = ["config.json", "weights.00.safetensors"]
let modelFiles = ["config.json", "*.safetensors"]
let modelDirectory = try await hub.snapshot(
from: repo, matching: modelFiles, progressHandler: progressHandler)
@@ -33,7 +33,17 @@ public func load(
let model = try baseConfig.modelType.createModel(configuration: configurationURL)
// load the weights
let weights = try loadArrays(url: modelDirectory.appending(component: "weights.00.safetensors"))
var weights = [String: MLXArray]()
let enumerator = FileManager.default.enumerator(
at: modelDirectory, includingPropertiesForKeys: nil)!
for case let url as URL in enumerator {
if url.pathExtension == "safetensors" {
let w = try loadArrays(url: url)
for (key, value) in w {
weights[key] = value
}
}
}
// quantize if needed
if let quantization = baseConfig.quantization {
@@ -49,14 +59,17 @@ public func load(
return (model, tokenizer)
}
// MARK: - Tokenizers
public func loadTokenizer(name: String) async throws -> Tokenizer {
// from AutoTokenizer.from() -- this lets us override parts of the configuration
let config = LanguageModelConfigurationFromHub(modelName: name)
guard var tokenizerConfig = try await config.tokenizerConfig else {
throw LLMError(message: "missing config")
}
let tokenizerData = try await config.tokenizerData
var tokenizerData = try await config.tokenizerData
// workaround: replacement tokenizers for unhandled values in swift-transform
if let tokenizerClass = tokenizerConfig.tokenizerClass?.stringValue,
let replacement = replacementTokenizers[tokenizerClass]
{
@@ -65,14 +78,55 @@ public func loadTokenizer(name: String) async throws -> Tokenizer {
tokenizerConfig = Config(dictionary)
}
// workaround: some merges can't be split on space in BPETokenizer
if let tokenizerClass = tokenizerConfig.tokenizerClass?.stringValue {
switch tokenizerClass {
case "T5Tokenizer":
break
default:
tokenizerData = discardUnhandledMerges(tokenizerData: tokenizerData)
}
}
return try PreTrainedTokenizer(tokenizerConfig: tokenizerConfig, tokenizerData: tokenizerData)
}
public func discardUnhandledMerges(tokenizerData: Config) -> Config {
// see https://github.com/ml-explore/mlx-swift-examples/issues/1
if let model = tokenizerData.model {
if let merges = model.dictionary["merges"] as? [String] {
// discard any merges that can't be split on a space
// (required by BPETokenizer)
let newMerges =
merges
.filter {
$0.split(separator: " ").count == 2
}
if newMerges.count != merges.count {
var newModel = model.dictionary
newModel["merges"] = newMerges
var newTokenizerData = tokenizerData.dictionary
newTokenizerData["model"] = newModel
return Config(newTokenizerData)
}
}
}
return tokenizerData
}
/// overrides for TokenizerModel/knownTokenizers
let replacementTokenizers = [
"CodeLlamaTokenizer": "LlamaTokenizer"
"CodeLlamaTokenizer": "LlamaTokenizer",
"GemmaTokenizer": "PreTrainedTokenizer",
]
// MARK: - Quantization
private func quantizeIfNeeded(
model: LLMModel, weights: [String: MLXArray], quantization: BaseConfiguration.Quantization
) {
@@ -105,69 +159,3 @@ private func quantizeIfNeeded(
model: model, groupSize: quantization.groupSize, bits: quantization.bits,
predicate: predicate)
}
private func sample(logits: MLXArray, temp: Float) -> MLXArray {
if temp == 0 {
return argMax(logits, axis: -1)
} else {
return categorical(logits * (1 / temp))
}
}
/// Synchronous generator of tokens.
///
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py
public struct TokenIterator: Sequence, IteratorProtocol {
let model: LLMModel
let temp: Float
var y: MLXArray
var cache: [(MLXArray, MLXArray)]
var first = true
public init(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) {
self.model = model
self.temp = temp
self.y = prompt
self.cache = []
}
mutating public func next() -> MLXArray? {
var logits: MLXArray
(logits, cache) = model(expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
y = sample(logits: logits[-1, axis: 1], temp: temp)
return y
}
}
/// Async generator of tokens.
///
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py.
///
/// Note that because MLXArray is not thread safe this eval's the result and sends the TokenId back
/// to the caller.
public func generate(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) -> (
Task<Void, Never>, AsyncBufferSequence<AsyncChannel<Int>>
) {
let channel = AsyncChannel<Int>()
let buffer = channel.buffer(policy: .bounded(10))
let task = Task {
var y = prompt
var cache = [(MLXArray, MLXArray)]()
while !Task.isCancelled {
var logits: MLXArray
(logits, cache) = model(
expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
y = sample(logits: logits[-1, axis: 1], temp: temp)
eval(y)
await channel.send(y.item(Int.self))
}
}
return (task, buffer)
}