partial fix for #1
- handle loading models with different names for the safetensors files (gemma) - handle merge tokens that can't be split - organize code into Load/Evaluate
This commit is contained in:
161
Libraries/LLM/Load.swift
Normal file
161
Libraries/LLM/Load.swift
Normal file
@@ -0,0 +1,161 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import AsyncAlgorithms
|
||||
import Foundation
|
||||
import Hub
|
||||
import MLX
|
||||
import MLXNN
|
||||
import MLXRandom
|
||||
import Tokenizers
|
||||
|
||||
struct LLMError: Error {
|
||||
let message: String
|
||||
}
|
||||
|
||||
/// Load and return the model and tokenizer
|
||||
public func load(
|
||||
hub: HubApi = HubApi(), name: String, progressHandler: @escaping (Progress) -> Void = { _ in }
|
||||
) async throws -> (LLMModel, Tokenizer) {
|
||||
// note: this doesn't have a way to pass the HubApi
|
||||
let tokenizer = try await loadTokenizer(name: name)
|
||||
|
||||
// download the model weights and config
|
||||
let repo = Hub.Repo(id: name)
|
||||
let modelFiles = ["config.json", "*.safetensors"]
|
||||
let modelDirectory = try await hub.snapshot(
|
||||
from: repo, matching: modelFiles, progressHandler: progressHandler)
|
||||
|
||||
// create the model (no weights loaded)
|
||||
let configurationURL = modelDirectory.appending(component: "config.json")
|
||||
let baseConfig = try JSONDecoder().decode(
|
||||
BaseConfiguration.self, from: Data(contentsOf: configurationURL))
|
||||
|
||||
let model = try baseConfig.modelType.createModel(configuration: configurationURL)
|
||||
|
||||
// load the weights
|
||||
var weights = [String: MLXArray]()
|
||||
let enumerator = FileManager.default.enumerator(
|
||||
at: modelDirectory, includingPropertiesForKeys: nil)!
|
||||
for case let url as URL in enumerator {
|
||||
if url.pathExtension == "safetensors" {
|
||||
let w = try loadArrays(url: url)
|
||||
for (key, value) in w {
|
||||
weights[key] = value
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// quantize if needed
|
||||
if let quantization = baseConfig.quantization {
|
||||
quantizeIfNeeded(model: model, weights: weights, quantization: quantization)
|
||||
}
|
||||
|
||||
// apply the loaded weights
|
||||
let parameters = ModuleParameters.unflattened(weights)
|
||||
try model.update(parameters: parameters, verify: [.all])
|
||||
|
||||
eval(model)
|
||||
|
||||
return (model, tokenizer)
|
||||
}
|
||||
|
||||
// MARK: - Tokenizers
|
||||
|
||||
public func loadTokenizer(name: String) async throws -> Tokenizer {
|
||||
// from AutoTokenizer.from() -- this lets us override parts of the configuration
|
||||
let config = LanguageModelConfigurationFromHub(modelName: name)
|
||||
guard var tokenizerConfig = try await config.tokenizerConfig else {
|
||||
throw LLMError(message: "missing config")
|
||||
}
|
||||
var tokenizerData = try await config.tokenizerData
|
||||
|
||||
// workaround: replacement tokenizers for unhandled values in swift-transform
|
||||
if let tokenizerClass = tokenizerConfig.tokenizerClass?.stringValue,
|
||||
let replacement = replacementTokenizers[tokenizerClass]
|
||||
{
|
||||
var dictionary = tokenizerConfig.dictionary
|
||||
dictionary["tokenizer_class"] = replacement
|
||||
tokenizerConfig = Config(dictionary)
|
||||
}
|
||||
|
||||
// workaround: some merges can't be split on space in BPETokenizer
|
||||
if let tokenizerClass = tokenizerConfig.tokenizerClass?.stringValue {
|
||||
switch tokenizerClass {
|
||||
case "T5Tokenizer":
|
||||
break
|
||||
default:
|
||||
tokenizerData = discardUnhandledMerges(tokenizerData: tokenizerData)
|
||||
}
|
||||
}
|
||||
|
||||
return try PreTrainedTokenizer(tokenizerConfig: tokenizerConfig, tokenizerData: tokenizerData)
|
||||
}
|
||||
|
||||
public func discardUnhandledMerges(tokenizerData: Config) -> Config {
|
||||
// see https://github.com/ml-explore/mlx-swift-examples/issues/1
|
||||
|
||||
if let model = tokenizerData.model {
|
||||
if let merges = model.dictionary["merges"] as? [String] {
|
||||
// discard any merges that can't be split on a space
|
||||
// (required by BPETokenizer)
|
||||
let newMerges =
|
||||
merges
|
||||
.filter {
|
||||
$0.split(separator: " ").count == 2
|
||||
}
|
||||
|
||||
if newMerges.count != merges.count {
|
||||
var newModel = model.dictionary
|
||||
newModel["merges"] = newMerges
|
||||
|
||||
var newTokenizerData = tokenizerData.dictionary
|
||||
newTokenizerData["model"] = newModel
|
||||
|
||||
return Config(newTokenizerData)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tokenizerData
|
||||
}
|
||||
|
||||
/// overrides for TokenizerModel/knownTokenizers
|
||||
let replacementTokenizers = [
|
||||
"CodeLlamaTokenizer": "LlamaTokenizer",
|
||||
"GemmaTokenizer": "PreTrainedTokenizer",
|
||||
]
|
||||
|
||||
// MARK: - Quantization
|
||||
|
||||
private func quantizeIfNeeded(
|
||||
model: LLMModel, weights: [String: MLXArray], quantization: BaseConfiguration.Quantization
|
||||
) {
|
||||
|
||||
func linearPredicate(layer: Module) -> Bool {
|
||||
if let layer = layer as? Linear {
|
||||
// avoid quantizing gate layers, otherwise we have to re-quant and upload all the mixtral models
|
||||
return layer.weight.dim(0) != 8
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
var predicate = linearPredicate(layer:)
|
||||
|
||||
// for legacy models that don't have lm_head quant due to non-32 dims
|
||||
if weights["lm_head.scales"] == nil {
|
||||
let vocabularySize = model.vocabularySize
|
||||
|
||||
func vocabularySizePredicate(layer: Module) -> Bool {
|
||||
if let layer = layer as? Linear {
|
||||
return layer.weight.dim(0) != 8 && layer.weight.dim(0) != vocabularySize
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
predicate = vocabularySizePredicate(layer:)
|
||||
}
|
||||
|
||||
QuantizedLinear.quantize(
|
||||
model: model, groupSize: quantization.groupSize, bits: quantization.bits,
|
||||
predicate: predicate)
|
||||
}
|
||||
Reference in New Issue
Block a user