// Copyright © 2024 Apple Inc. import Foundation import MLX import MLXNN // based on https://github.com/ml-explore/mlx-examples/blob/main/mnist/main.py public class MLP: Module, UnaryLayer { @ModuleInfo var layers: [Linear] public init(layers: Int, inputDimensions: Int, hiddenDimensions: Int, outputDimensions: Int) { let layerSizes = [inputDimensions] + Array(repeating: hiddenDimensions, count: layers) + [ outputDimensions ] self.layers = zip(layerSizes.dropLast(), layerSizes.dropFirst()) .map { Linear($0, $1) } } public func callAsFunction(_ x: MLXArray) -> MLXArray { var x = x for l in layers.dropLast() { x = relu(l(x)) } return layers.last!(x) } } public func loss(model: MLP, x: MLXArray, y: MLXArray) -> MLXArray { crossEntropy(logits: model(x), targets: y, reduction: .mean) } public func eval(model: MLP, x: MLXArray, y: MLXArray) -> MLXArray { mean(argMax(model(x), axis: 1) .== y) } private struct BatchSequence: Sequence, IteratorProtocol { let batchSize: Int let x: MLXArray let y: MLXArray let indexes: MLXArray var index = 0 init(batchSize: Int, x: MLXArray, y: MLXArray, using generator: inout any RandomNumberGenerator) { self.batchSize = batchSize self.x = x self.y = y self.indexes = MLXArray(Array(0 ..< y.size).shuffled(using: &generator)) } mutating func next() -> (MLXArray, MLXArray)? { guard index < y.size else { return nil } let range = index ..< Swift.min(index + batchSize, y.size) index += batchSize let ids = indexes[range] return (x[ids], y[ids]) } } public func iterateBatches( batchSize: Int, x: MLXArray, y: MLXArray, using generator: inout any RandomNumberGenerator ) -> some Sequence<(MLXArray, MLXArray)> { BatchSequence(batchSize: batchSize, x: x, y: y, using: &generator) }