* implement LoRA / QLoRA - example of using MLX to fine-tune an LLM with low rank adaptation (LoRA) for a target task - see also https://arxiv.org/abs/2106.09685 - based on https://github.com/ml-explore/mlx-examples/tree/main/lora * add some command line flags I found useful during use - --quiet -- don't print decorator text, just the generated text - --prompt @/tmp/file.txt -- load prompt from file * user can specify path to model OR model identifier in huggingface * update mlx-swift reference Co-authored-by: Ashraful Islam <ashraful.meche@gmail.com> Co-authored-by: JustinMeans <46542161+JustinMeans@users.noreply.github.com>
247 lines
8.4 KiB
Swift
247 lines
8.4 KiB
Swift
import Foundation
|
|
import MLX
|
|
import MLXFast
|
|
import MLXNN
|
|
|
|
// port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/cohere.py
|
|
|
|
private class Attention: Module {
|
|
|
|
let args: CohereConfiguration
|
|
let scale: Float
|
|
|
|
@ModuleInfo(key: "q_proj") var wq: Linear
|
|
@ModuleInfo(key: "k_proj") var wk: Linear
|
|
@ModuleInfo(key: "v_proj") var wv: Linear
|
|
@ModuleInfo(key: "o_proj") var wo: Linear
|
|
|
|
let rope: RoPE
|
|
|
|
public init(_ args: CohereConfiguration) {
|
|
self.args = args
|
|
|
|
let dim = args.hiddenSize
|
|
let heads = args.attentionHeads
|
|
let kvHeads = args.kvHeads
|
|
|
|
let headDim = args.hiddenSize / heads
|
|
self.scale = pow(Float(headDim), -0.5)
|
|
|
|
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: false)
|
|
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
|
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
|
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
|
|
|
|
self.rope = RoPE(
|
|
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta)
|
|
}
|
|
|
|
public func callAsFunction(
|
|
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
|
) -> (MLXArray, (MLXArray, MLXArray)) {
|
|
let (B, L) = (x.dim(0), x.dim(1))
|
|
|
|
var queries = wq(x)
|
|
var keys = wk(x)
|
|
var values = wv(x)
|
|
|
|
// prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
|
|
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
|
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
|
|
|
if let (keyCache, valueCache) = cache {
|
|
queries = rope(queries, offset: keyCache.dim(2))
|
|
keys = rope(keys, offset: keyCache.dim(2))
|
|
keys = concatenated([keyCache, keys], axis: 2)
|
|
values = concatenated([valueCache, values], axis: 2)
|
|
} else {
|
|
queries = rope(queries)
|
|
keys = rope(keys)
|
|
}
|
|
|
|
let output = MLXFast.scaledDotProductAttention(
|
|
queries: queries, keys: keys, values: values, scale: scale, mask: mask
|
|
)
|
|
.transposed(0, 2, 1, 3)
|
|
.reshaped(B, L, -1)
|
|
|
|
return (wo(output), (keys, values))
|
|
}
|
|
}
|
|
|
|
private class MLP: Module, UnaryLayer {
|
|
|
|
@ModuleInfo(key: "gate_proj") var gate: Linear
|
|
@ModuleInfo(key: "down_proj") var down: Linear
|
|
@ModuleInfo(key: "up_proj") var up: Linear
|
|
|
|
public init(dimensions: Int, hiddenDimensions: Int) {
|
|
self._gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
|
self._up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
|
self._down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
|
|
|
|
}
|
|
|
|
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
|
down(silu(gate(x)) * up(x))
|
|
}
|
|
}
|
|
|
|
private class TransformerBlock: Module {
|
|
|
|
@ModuleInfo(key: "self_attn") var attention: Attention
|
|
let mlp: MLP
|
|
|
|
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: LayerNorm
|
|
|
|
public init(_ args: CohereConfiguration) {
|
|
self._attention.wrappedValue = Attention(args)
|
|
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
|
|
self._inputLayerNorm.wrappedValue = LayerNorm(
|
|
dimensions: args.hiddenSize, eps: args.layerNormEps)
|
|
|
|
}
|
|
|
|
public func callAsFunction(
|
|
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
|
) -> (MLXArray, (MLXArray, MLXArray)) {
|
|
let h = inputLayerNorm(x)
|
|
let (attnH, cache) = attention(h, mask: mask, cache: cache)
|
|
let ffH = mlp(h)
|
|
return (attnH + ffH + x, cache)
|
|
}
|
|
}
|
|
|
|
public class CohereModelInner: Module {
|
|
|
|
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
|
|
|
|
fileprivate let layers: [TransformerBlock]
|
|
let norm: LayerNorm
|
|
|
|
public init(_ args: CohereConfiguration) {
|
|
precondition(args.vocabularySize > 0)
|
|
|
|
self._embedTokens.wrappedValue = Embedding(
|
|
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
|
|
|
|
self.layers = (0 ..< args.hiddenLayers)
|
|
.map { _ in
|
|
TransformerBlock(args)
|
|
}
|
|
self.norm = LayerNorm(dimensions: args.hiddenSize, eps: args.layerNormEps)
|
|
}
|
|
|
|
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
|
|
MLXArray, [(MLXArray, MLXArray)]
|
|
) {
|
|
var h = embedTokens(inputs)
|
|
|
|
var mask: MLXArray? = nil
|
|
if h.dim(1) > 1 {
|
|
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
|
|
mask = mask?.asType(h.dtype)
|
|
}
|
|
|
|
var newCache = [(MLXArray, MLXArray)]()
|
|
|
|
for (i, layer) in layers.enumerated() {
|
|
var cacheUpdate: (MLXArray, MLXArray)
|
|
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
|
|
newCache.append(cacheUpdate)
|
|
}
|
|
|
|
return (norm(h), newCache)
|
|
}
|
|
}
|
|
|
|
public class CohereModel: Module, LLMModel {
|
|
|
|
public let vocabularySize: Int
|
|
let model: CohereModelInner
|
|
let logitScale: Float
|
|
|
|
public init(_ args: CohereConfiguration) {
|
|
self.vocabularySize = args.vocabularySize
|
|
self.model = CohereModelInner(args)
|
|
self.logitScale = args.logitScale
|
|
}
|
|
|
|
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
|
|
MLXArray, [(MLXArray, MLXArray)]
|
|
) {
|
|
var (out, cache) = model(inputs, cache: cache)
|
|
out = matmul(out, model.embedTokens.weight.T)
|
|
out = out * self.logitScale
|
|
return (out, cache)
|
|
}
|
|
}
|
|
|
|
public struct CohereConfiguration: Codable {
|
|
|
|
var hiddenSize: Int
|
|
var hiddenLayers: Int
|
|
var intermediateSize: Int
|
|
var attentionHeads: Int
|
|
var layerNormEps: Float
|
|
var vocabularySize: Int
|
|
var kvHeads: Int
|
|
var ropeTheta: Float = 8000000.0
|
|
var ropeTraditional: Bool = true
|
|
var ropeScaling: [String: StringOrNumber]? = nil
|
|
var logitScale: Float
|
|
|
|
enum CodingKeys: String, CodingKey {
|
|
case hiddenSize = "hidden_size"
|
|
case hiddenLayers = "num_hidden_layers"
|
|
case intermediateSize = "intermediate_size"
|
|
case attentionHeads = "num_attention_heads"
|
|
case kvHeads = "num_key_value_heads"
|
|
case ropeTheta = "rope_theta"
|
|
case vocabularySize = "vocab_size"
|
|
case layerNormEps = "layer_norm_eps"
|
|
case logitScale = "logit_scale"
|
|
case ropeTraditional = "rope_traditional"
|
|
case ropeScaling = "rope_scaling"
|
|
}
|
|
|
|
public init(from decoder: Decoder) throws {
|
|
// custom implementation to handle optional keys with required values
|
|
let container: KeyedDecodingContainer<CohereConfiguration.CodingKeys> =
|
|
try decoder.container(
|
|
keyedBy: CohereConfiguration.CodingKeys.self)
|
|
|
|
self.hiddenSize = try container.decode(
|
|
Int.self, forKey: CohereConfiguration.CodingKeys.hiddenSize)
|
|
self.hiddenLayers = try container.decode(
|
|
Int.self, forKey: CohereConfiguration.CodingKeys.hiddenLayers)
|
|
self.intermediateSize = try container.decode(
|
|
Int.self, forKey: CohereConfiguration.CodingKeys.intermediateSize)
|
|
self.attentionHeads = try container.decode(
|
|
Int.self, forKey: CohereConfiguration.CodingKeys.attentionHeads)
|
|
self.layerNormEps = try container.decode(
|
|
Float.self, forKey: CohereConfiguration.CodingKeys.layerNormEps)
|
|
self.vocabularySize = try container.decode(
|
|
Int.self, forKey: CohereConfiguration.CodingKeys.vocabularySize)
|
|
self.kvHeads = try container.decode(
|
|
Int.self, forKey: CohereConfiguration.CodingKeys.kvHeads)
|
|
self.ropeTheta =
|
|
try container.decodeIfPresent(
|
|
Float.self, forKey: CohereConfiguration.CodingKeys.ropeTheta)
|
|
?? 8000000.0
|
|
self.ropeScaling = try container.decodeIfPresent(
|
|
[String: StringOrNumber].self, forKey: CohereConfiguration.CodingKeys.ropeScaling)
|
|
self.logitScale = try container.decode(
|
|
Float.self, forKey: CohereConfiguration.CodingKeys.logitScale)
|
|
}
|
|
}
|
|
|
|
// MARK: - LoRA
|
|
|
|
extension CohereModel: LoRAModel {
|
|
public func loraLinearLayers() -> LoRALinearLayers {
|
|
model.layers.map { ($0.attention, ["q_proj", "v_proj"]) }
|
|
}
|
|
}
|