* implement LoRA / QLoRA - example of using MLX to fine-tune an LLM with low rank adaptation (LoRA) for a target task - see also https://arxiv.org/abs/2106.09685 - based on https://github.com/ml-explore/mlx-examples/tree/main/lora * add some command line flags I found useful during use - --quiet -- don't print decorator text, just the generated text - --prompt @/tmp/file.txt -- load prompt from file * user can specify path to model OR model identifier in huggingface * update mlx-swift reference Co-authored-by: Ashraful Islam <ashraful.meche@gmail.com> Co-authored-by: JustinMeans <46542161+JustinMeans@users.noreply.github.com>
640 lines
23 KiB
Swift
640 lines
23 KiB
Swift
// Copyright © 2024 Apple Inc.
|
|
|
|
import Foundation
|
|
import MLX
|
|
import MLXNN
|
|
import MLXOptimizers
|
|
import MLXRandom
|
|
import Tokenizers
|
|
|
|
/// Layers to apply LoRA adapters to.
|
|
///
|
|
/// This is the value returned by ``LoRAModel/loraLinearLayers()``.
|
|
public typealias LoRALinearLayers = [(Module, [String])]
|
|
|
|
public protocol LoRAModel {
|
|
/// Return the layers and keys to apply LoRA adapters to.
|
|
///
|
|
/// For example this might apply the adapters to the `q` an `v` projections in the
|
|
/// Attention layers:
|
|
///
|
|
/// ```swift
|
|
/// model.layers.map { ($0.attention, ["q_proj", "v_proj"]) }
|
|
/// ```
|
|
///
|
|
/// It is not required that a model implement this protocol to have LoRA adapters applied, but
|
|
/// the command line driver example uses this to produce the ``LoRALinearLayers``.
|
|
///
|
|
/// ### See Also
|
|
/// - ``LoRATrain/convert(model:layers:)``
|
|
func loraLinearLayers() -> LoRALinearLayers
|
|
}
|
|
|
|
/// Protocol for LoRA implementations that provides a method for converting back to a `Linear`
|
|
/// (or subtype).
|
|
///
|
|
/// This is normally called via ``LoRATrain/fuse(model:layers:deQuantize:)``
|
|
public protocol LoRAConvertToLinear {
|
|
func toLinear(deQuantize: Bool) -> Linear
|
|
}
|
|
|
|
/// Implementation of LoRA `Linear` replacement layer.
|
|
///
|
|
/// This layer implements the LoRA capabilities for `Linear` layers, specifically:
|
|
///
|
|
/// - converting `Linear` or `QuantizedLinear` layers to ``LoRALinear`` / ``QLoRALinear``
|
|
/// - converting ``LoRALinear`` back to `Linear` or `QuantizedLinear` (``LoRAConvertToLinear``)
|
|
/// - implementing the LoRA evaluation
|
|
///
|
|
/// ``QLoRALinear`` is the equivalent class for `QuantizedLinear`.
|
|
///
|
|
/// This is not typically used directly -- ``LoRATrain/convert(model:layers:)`` is used to
|
|
/// add the adapter layers to a given model.
|
|
///
|
|
/// ### See Also
|
|
/// - [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)
|
|
/// - [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
|
|
/// - ``QLoRALinear``
|
|
/// - ``LoRATrain/convert(model:layers:)``
|
|
/// - ``LoRATrain/fuse(model:layers:deQuantize:)``
|
|
public class LoRALinear: Linear, LoRAConvertToLinear {
|
|
|
|
let scale: Float
|
|
|
|
@ParameterInfo(key: "lora_a") var loraA: MLXArray
|
|
@ParameterInfo(key: "lora_b") var loraB: MLXArray
|
|
|
|
required public init(
|
|
_ inputDimensions: Int, _ outputDimensions: Int, rank: Int = 8, bias: Bool = false,
|
|
scale: Float = 20.0, linear: Linear
|
|
) {
|
|
// Scale for low-rank update
|
|
self.scale = scale
|
|
|
|
// Low rank lora weights
|
|
let loraScale = 1 / sqrt(Float(inputDimensions))
|
|
self._loraA.wrappedValue = MLXRandom.uniform(
|
|
low: -loraScale, high: loraScale, [inputDimensions, rank])
|
|
self._loraB.wrappedValue = MLXArray.zeros([rank, outputDimensions])
|
|
|
|
super.init(weight: linear.weight, bias: linear.bias)
|
|
|
|
freeze()
|
|
}
|
|
|
|
/// Freeze all parameters except the lora parameters
|
|
public override func freeze(recursive: Bool = true, keys: [String]? = nil, strict: Bool = false)
|
|
throws
|
|
{
|
|
// realize the keys and omit the lora parameters
|
|
let keys =
|
|
(keys ?? self.filterMap(filter: Self.filterLocalParameters).flattened().map { $0.0 })
|
|
.filter {
|
|
$0 != "lora_a" && $0 != "lora_b"
|
|
}
|
|
try super.freeze(recursive: recursive, keys: keys, strict: strict)
|
|
}
|
|
|
|
/// Convert a `Linear` or `QuantizedLinear` layer into a new `Linear` layer
|
|
/// that implements the `LoRA` adapter.
|
|
///
|
|
/// This is typically called via ``LoRATrain/convert(model:layers:)``.
|
|
///
|
|
/// ### See Also
|
|
/// - ``LoRATrain/convert(model:layers:)``
|
|
/// - ``QLoRALinear/from(linear:rank:)``
|
|
public static func from(linear: Linear, rank: Int = 8) -> Linear {
|
|
if let linear = linear as? QuantizedLinear {
|
|
return QLoRALinear.from(linear: linear, rank: rank)
|
|
}
|
|
let (outputDimensions, inputDimensions) = linear.shape
|
|
return LoRALinear(inputDimensions, outputDimensions, rank: rank, linear: linear)
|
|
}
|
|
|
|
/// Convert back into a fused `Linear` layer.
|
|
///
|
|
/// This is typically called via ``LoRATrain/fuse(model:layers:deQuantize:)``.
|
|
///
|
|
/// ### See Also
|
|
/// - ``LoRATrain/fuse(model:layers:deQuantize:)``
|
|
/// - ``LoRAConvertToLinear``
|
|
/// - ``QLoRALinear/toLinear(deQuantize:)``
|
|
public func toLinear(deQuantize: Bool = false) -> Linear {
|
|
let dtype = weight.dtype
|
|
let loraB = (scale * loraB.T).asType(dtype)
|
|
let loraA = loraA.T.asType(dtype)
|
|
return Linear(weight: weight + matmul(loraB, loraA), bias: bias)
|
|
}
|
|
|
|
public override func callAsFunction(_ x: MLXArray) -> MLXArray {
|
|
let y = super.callAsFunction(x.asType(weight.dtype))
|
|
let z = matmul(matmul(x, self.loraA), self.loraB)
|
|
return y + scale * z
|
|
}
|
|
}
|
|
|
|
/// Implementation of LoRA `QuantizedLinear` replacement layer.
|
|
///
|
|
/// See ``LoRALinear`` (equivalent class for `Linear` layers) for more information.
|
|
public class QLoRALinear: QuantizedLinear, LoRAConvertToLinear {
|
|
|
|
let scale: Float
|
|
|
|
@ParameterInfo(key: "lora_a") var loraA: MLXArray
|
|
@ParameterInfo(key: "lora_b") var loraB: MLXArray
|
|
|
|
required public init(
|
|
_ inputDimensions: Int, _ outputDimensions: Int, rank: Int = 8, bias: Bool = false,
|
|
scale: Float = 20.0, linear: QuantizedLinear
|
|
) {
|
|
|
|
// Scale for low-rank update
|
|
self.scale = scale
|
|
|
|
// Low rank lora weights
|
|
let loraScale = 1 / sqrt(Float(inputDimensions))
|
|
self._loraA.wrappedValue = MLXRandom.uniform(
|
|
low: -loraScale, high: loraScale, [inputDimensions, rank])
|
|
self._loraB.wrappedValue = MLXArray.zeros([rank, outputDimensions])
|
|
|
|
super.init(
|
|
weight: linear.weight, bias: linear.bias, scales: linear.scales, biases: linear.biases,
|
|
groupSize: linear.groupSize, bits: linear.bits)
|
|
|
|
// start frozen except for the lora keys
|
|
freeze()
|
|
}
|
|
|
|
/// Freeze all parameters except the lora parameters
|
|
public override func freeze(recursive: Bool = true, keys: [String]? = nil, strict: Bool = false)
|
|
throws
|
|
{
|
|
// realize the keys and omit the lora parameters
|
|
let keys =
|
|
(keys ?? self.filterMap(filter: Self.filterLocalParameters).flattened().map { $0.0 })
|
|
.filter {
|
|
$0 != "lora_a" && $0 != "lora_b"
|
|
}
|
|
try super.freeze(recursive: recursive, keys: keys, strict: strict)
|
|
}
|
|
|
|
/// Convert a `QuantizedLinear` layer into a new `Linear` layer
|
|
/// that implements the `LoRA` adapter.
|
|
///
|
|
/// This is typically called via ``LoRATrain/convert(model:layers:)``.
|
|
///
|
|
/// ### See Also
|
|
/// - ``LoRATrain/convert(model:layers:)``
|
|
/// - ``LoRALinear/from(linear:rank:)``
|
|
public static func from(linear: QuantizedLinear, rank: Int = 8) -> Linear {
|
|
var (outputDimensions, inputDimensions) = linear.shape
|
|
inputDimensions = inputDimensions * 32 / linear.bits
|
|
return QLoRALinear(inputDimensions, outputDimensions, rank: rank, linear: linear)
|
|
}
|
|
|
|
/// Convert back into a fused `QuantizedLinear` layer.
|
|
///
|
|
/// This is typically called via ``LoRATrain/fuse(model:layers:deQuantize:)``.
|
|
///
|
|
/// ### See Also
|
|
/// - ``LoRATrain/fuse(model:layers:deQuantize:)``
|
|
public func toLinear(deQuantize: Bool = false) -> Linear {
|
|
// convert back into full weights
|
|
let weight = dequantized(
|
|
weight, scales: scales, biases: biases, groupSize: groupSize, bits: bits)
|
|
|
|
let loraB = (scale * loraB.T).asType(.float16)
|
|
let loraA = loraA.T.asType(.float16)
|
|
|
|
// convert back into quantized
|
|
return QuantizedLinear(
|
|
weight: weight + matmul(loraB, loraA), bias: bias, groupSize: groupSize, bits: bits)
|
|
}
|
|
|
|
public override func callAsFunction(_ x: MLXArray) -> MLXArray {
|
|
let y = super.callAsFunction(x.asType(scales.dtype))
|
|
let z = matmul(matmul(x, self.loraA), self.loraB)
|
|
return y + scale * z
|
|
}
|
|
}
|
|
|
|
/// Equivalent to `lora.py/iterate_batches()`. Used internally by ``LoRATrain``.
|
|
struct LoRABatchIterator: Sequence, IteratorProtocol {
|
|
|
|
let dataset: [String]
|
|
let batchSize: Int
|
|
let tokenizer: Tokenizer
|
|
|
|
let train: Bool
|
|
|
|
var indices: [Int]
|
|
var index = 0
|
|
|
|
public init(dataset: [String], tokenizer: Tokenizer, batchSize: Int, train: Bool) {
|
|
self.dataset = dataset
|
|
self.batchSize = batchSize
|
|
self.tokenizer = tokenizer
|
|
self.train = train
|
|
|
|
self.indices = Array(0 ..< dataset.count)
|
|
if train {
|
|
indices.shuffle()
|
|
}
|
|
}
|
|
|
|
mutating public func next() -> (MLXArray, MLXArray, MLXArray)? {
|
|
if index >= indices.count {
|
|
if !train {
|
|
return nil
|
|
}
|
|
|
|
indices.shuffle()
|
|
index = 0
|
|
}
|
|
|
|
let endIndex = Swift.min(index + batchSize, indices.count)
|
|
|
|
let batch = (index ..< endIndex)
|
|
.map { tokenizer.encode(text: dataset[indices[$0]]) }
|
|
let lengths = batch.map { $0.count }
|
|
let maxLength = lengths.max() ?? 0
|
|
|
|
if maxLength > 2048 {
|
|
print(
|
|
"""
|
|
[WARNING] Some sequences are longer than 2048 tokens.
|
|
Consider pre-splitting your data to save memory.
|
|
""")
|
|
}
|
|
|
|
// pad to the max length
|
|
let batchArray = MLXArray.zeros([lengths.count, maxLength], type: Int32.self)
|
|
for (j, (b, l)) in zip(batch, lengths).enumerated() {
|
|
batchArray[j, 0 ..< l] = MLXArray(b)
|
|
}
|
|
|
|
index = endIndex
|
|
|
|
return (batchArray[0..., .stride(to: -1)], batchArray[0..., 1...], MLXArray(lengths))
|
|
}
|
|
|
|
}
|
|
|
|
/// Collection of functions for adding LoRA adapters to an LLM model, training, fusing and saving/loading weights.
|
|
///
|
|
/// The typical flow for training is:
|
|
///
|
|
/// ```swift
|
|
/// // load the base model and tokenizer
|
|
/// let (model, tokenizer) = try await LLM.load(configuration: ModelConfiguration.mistral7B4bit)
|
|
///
|
|
/// // add LoRALinear adapter layers
|
|
/// LoRATrain.convert(model: model, layers: Array(model.loraLinearLayers().suffix(4)))
|
|
///
|
|
/// // optionally load LoRA weights
|
|
/// try LoRATrain.loadLoRAWeights(model: model, url: ...)
|
|
///
|
|
/// // load the train/validation data
|
|
/// let train = try loadLoRAData(directory: data, name: "train")
|
|
/// let valid = try loadLoRAData(directory: data, name: "valid")
|
|
///
|
|
/// // train
|
|
/// let optimizer = Adam(learningRate: 1e-5)
|
|
/// try await LoRATrain.train(
|
|
/// model: model, train: train, validate: valid, optimizer: optimizer, tokenizer: tokenizer,
|
|
/// parameters: LoRATrain.Parameters()
|
|
/// ) { progress in
|
|
/// print(progress)
|
|
/// return .more
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// At this point the model will be trained and you could do one of the following:
|
|
///
|
|
/// - ``saveLoRAWeights(model:url:)`` -- write the LoRA weights to a file
|
|
/// - ``fuse(model:layers:deQuantize:)`` -- fuse the LoRA weights and convert back into the original model
|
|
/// architecture. These weights can be saved and reloaded with normal model handling code.
|
|
/// - ``evaluate(model:dataset:loss:tokenizer:batchSize:batchCount:)``-- compute the test loss
|
|
/// againts a test dataset
|
|
/// - use the in memory model as a normal `LLMModel` and evaluate a prompt
|
|
///
|
|
public enum LoRATrain {
|
|
|
|
public typealias LoraLossFunction = (Module, MLXArray, MLXArray, MLXArray) -> (
|
|
MLXArray, MLXArray
|
|
)
|
|
|
|
/// LoRA training parameters
|
|
public struct Parameters {
|
|
/// number of prompts to evaluate per iteration
|
|
public var batchSize = 4
|
|
|
|
/// number of iterations to train for
|
|
public var iterations = 1000
|
|
|
|
/// number of training steps between loss reporting
|
|
public var stepsPerReport = 10
|
|
|
|
/// number of steps between validations
|
|
public var stepsPerEval = 100
|
|
|
|
/// number of validations batches, `0` uses the entire validation set
|
|
public var validationBatches = 10
|
|
|
|
/// save the model every N iterations
|
|
public var saveEvery = 100
|
|
|
|
/// save path for the adapter `.safetensors`
|
|
public var adapterURL: URL?
|
|
|
|
public init(
|
|
batchSize: Int = 4, iterations: Int = 1000, stepsPerReport: Int = 10,
|
|
stepsPerEval: Int = 100, validationBatches: Int = 10, saveEvery: Int = 100,
|
|
adapterURL: URL? = nil
|
|
) {
|
|
self.batchSize = batchSize
|
|
self.iterations = iterations
|
|
self.stepsPerReport = stepsPerReport
|
|
self.stepsPerEval = stepsPerEval
|
|
self.validationBatches = validationBatches
|
|
self.saveEvery = saveEvery
|
|
self.adapterURL = adapterURL
|
|
}
|
|
}
|
|
|
|
/// Freeze the model layers and replace the indicated modules (Linear) that should be
|
|
/// converted to ``LoRALinear`` and remain trainable.
|
|
///
|
|
/// Once a model has had the LoRA adapters applied, adapter weights can be loaded
|
|
/// (if available):
|
|
///
|
|
/// ```swift
|
|
/// try LoRATrain.loadLoRAWeights(model: model, url: args.adapter)
|
|
/// ```
|
|
///
|
|
/// At this point the model is ready for one or more of the following:
|
|
///
|
|
/// - training with ``train(model:train:validate:optimizer:loss:tokenizer:parameters:progress:)``
|
|
/// - loss evaluation with ``evaluate(model:dataset:loss:tokenizer:batchSize:batchCount:)``
|
|
/// - fusing with ``fuse(model:layers:deQuantize:)``
|
|
/// - text generation with ``generate(promptTokens:parameters:model:tokenizer:didGenerate:)``
|
|
/// - note that this is just using normal model text generation
|
|
///
|
|
/// - Parameters:
|
|
/// - model: model to convert
|
|
/// - layers: number of suffix layers to convert
|
|
public static func convert(model: Module, layers: LoRALinearLayers) {
|
|
model.freeze()
|
|
|
|
for (layer, keys) in layers {
|
|
var update = ModuleChildren()
|
|
let children = layer.children()
|
|
for key in keys {
|
|
if let item = children[key], case .value(let child) = item {
|
|
if let linear = child as? Linear {
|
|
update[key] = .value(LoRALinear.from(linear: linear))
|
|
} else {
|
|
print("\(key) on \(layer) is not Linear")
|
|
}
|
|
} else {
|
|
print("failed to find key \(key) on \(layer)")
|
|
}
|
|
}
|
|
layer.update(modules: update)
|
|
}
|
|
}
|
|
|
|
/// Fuses the LoRA adapters back into the model weights.
|
|
///
|
|
/// This produces a model in the original format with `Linear` or `QuantizedLinear` layer
|
|
/// weights that incorporate the LoRA adapter.
|
|
///
|
|
/// - Parameters:
|
|
/// - model: model to convert
|
|
/// - deQuantize: if `true` will convert `QuantizedLinear` back into `Linear`
|
|
public static func fuse(model: Module, layers: LoRALinearLayers, deQuantize: Bool = false) {
|
|
for (layer, keys) in layers {
|
|
var update = ModuleChildren()
|
|
let children = layer.children()
|
|
for key in keys {
|
|
if let item = children[key], case .value(let child) = item {
|
|
if let lora = child as? LoRAConvertToLinear {
|
|
update[key] = .value(lora.toLinear(deQuantize: deQuantize))
|
|
}
|
|
}
|
|
}
|
|
if !update.isEmpty {
|
|
layer.update(modules: update)
|
|
}
|
|
}
|
|
}
|
|
|
|
public static func loss(model: Module, inputs: MLXArray, targets: MLXArray, lengths: MLXArray)
|
|
-> (
|
|
MLXArray, MLXArray
|
|
)
|
|
{
|
|
// def loss(model, inputs, targets, lengths):
|
|
|
|
// run model on inputs
|
|
let model = model as! LLMModel
|
|
let logits = model(inputs, cache: nil).0.asType(.float32)
|
|
|
|
// mask padding tokens
|
|
let lengthMask = MLXArray(0 ..< inputs.dim(1))[.newAxis, 0...] .< lengths[0..., .newAxis]
|
|
|
|
// calculate the loss
|
|
let ntoks = lengthMask.sum()
|
|
let ce = (crossEntropy(logits: logits, targets: targets) * lengthMask).sum() / ntoks
|
|
return (ce, ntoks)
|
|
}
|
|
|
|
/// Evaluate the model and dataset and return the loss over the entire dataset.
|
|
///
|
|
/// - Parameters:
|
|
/// - model: the model to evaluate
|
|
/// - dataset: the dataset
|
|
/// - loss: loss function
|
|
/// - tokenizer: tokenizer
|
|
/// - batchSize: number of items from the dataset to evaluate at once
|
|
/// - batchCount: number of batch elements to evaluate, 0 for all
|
|
/// - Returns: the loss over the enumerate data
|
|
///
|
|
/// ### See Also
|
|
/// - ``loadLoRAData(directory:name:)``
|
|
public static func evaluate(
|
|
model: Module, dataset: [String], loss: LoraLossFunction = loss, tokenizer: Tokenizer,
|
|
batchSize: Int, batchCount: Int
|
|
) -> Float {
|
|
var allLosses = [Float]()
|
|
var tokenCount = 0
|
|
|
|
for (iteration, (inputs, targets, lengths)) in LoRABatchIterator(
|
|
dataset: dataset, tokenizer: tokenizer, batchSize: batchSize, train: false
|
|
).enumerated() {
|
|
let (losses, tokens) = loss(model, inputs, targets, lengths)
|
|
allLosses.append((losses * tokens).item(Float.self))
|
|
tokenCount += tokens.item(Int.self)
|
|
|
|
if batchCount != 0 && iteration + 1 >= batchCount {
|
|
break
|
|
}
|
|
}
|
|
|
|
return (sum(MLXArray(allLosses), stream: .cpu) / tokenCount).item(Float.self)
|
|
}
|
|
|
|
/// Given a model with LoRA adaptors applied, load adapter weights from a `.safetensors` file.
|
|
///
|
|
/// ### See Also
|
|
/// - ``convert(model:layers:)``
|
|
/// - ``saveLoRAWeights(model:url:)``
|
|
public static func loadLoRAWeights(model: Module, url: URL) throws {
|
|
let weights = try ModuleParameters.unflattened(loadArrays(url: url))
|
|
try model.update(parameters: weights, verify: .noUnusedKeys)
|
|
eval(model)
|
|
}
|
|
|
|
/// Given a model with LoRA adaptors applied, write adapter weights to a `.safetensors` file.
|
|
///
|
|
/// ### See Also
|
|
/// - ``convert(model:layers:)``
|
|
/// - ``loadLoRAWeights(model:url:)``
|
|
public static func saveLoRAWeights(model: Module, url: URL) throws {
|
|
let parameters = Dictionary(
|
|
uniqueKeysWithValues: model.trainableParameters().flattened())
|
|
try save(arrays: parameters, url: url)
|
|
}
|
|
|
|
public enum Progress: CustomStringConvertible {
|
|
case train(
|
|
iteration: Int, trainingLoss: Float, iterationsPerSecond: Double,
|
|
tokensPerSecond: Double)
|
|
case validation(iteration: Int, validationLoss: Float, validationTime: Double)
|
|
case save(iteration: Int, url: URL)
|
|
|
|
public var description: String {
|
|
switch self {
|
|
case .train(
|
|
let iteration, let trainingLoss, let iterationsPerSecond, let tokensPerSecond):
|
|
"Iteration \(iteration + 1): training loss \(trainingLoss.formatted()), "
|
|
+ "iterations/sec \(iterationsPerSecond.formatted()), "
|
|
+ "Tokens/sec \(tokensPerSecond.formatted())"
|
|
case .validation(let iteration, let validationLoss, let validationTime):
|
|
"Iteration \(iteration + 1): "
|
|
+ "validation loss \(validationLoss.formatted()), "
|
|
+ "validation time \(validationTime.formatted())s"
|
|
case .save(let iteration, let url):
|
|
"Iteration \(iteration + 1): saved weights to \(url.path())"
|
|
}
|
|
}
|
|
}
|
|
|
|
public enum ProgressDisposition {
|
|
case stop
|
|
case more
|
|
}
|
|
|
|
/// Train (or continue training) LoRA weights.
|
|
///
|
|
/// - Parameters:
|
|
/// - model: model to train
|
|
/// - train: training dataset
|
|
/// - validate: validate dataset
|
|
/// - optimizer: optimizer used in training
|
|
/// - loss: loss function
|
|
/// - tokenizer: tokenizer
|
|
/// - parameters: training parameters
|
|
/// - progress: progress callback
|
|
public static func train(
|
|
model: Module, train: [String], validate: [String], optimizer: Optimizer,
|
|
loss: @escaping LoraLossFunction = loss, tokenizer: Tokenizer, parameters: Parameters,
|
|
progress: (Progress) async -> ProgressDisposition
|
|
) async throws {
|
|
// def train(model, train_set, val_set, optimizer, loss, tokenizer, args)
|
|
|
|
let lossValueGrad = valueAndGrad(model: model) { model, arrays in
|
|
let (ce, ntoks) = loss(model, arrays[0], arrays[1], arrays[2])
|
|
return [ce, ntoks]
|
|
}
|
|
|
|
var losses = [Float]()
|
|
var tokenCount = 0
|
|
|
|
var start = Date.timeIntervalSinceReferenceDate
|
|
|
|
for (iteration, (inputs, targets, lengths)) in LoRABatchIterator(
|
|
dataset: train, tokenizer: tokenizer, batchSize: parameters.batchSize, train: true
|
|
).enumerated() {
|
|
// forward and backward pass
|
|
let (resultArray, grad) = lossValueGrad(model, [inputs, targets, lengths])
|
|
let lvalue = resultArray[0]
|
|
let tokens = resultArray[1]
|
|
|
|
// model update
|
|
optimizer.update(model: model, gradients: grad)
|
|
eval(model, optimizer, lvalue)
|
|
|
|
// record loss
|
|
losses.append(lvalue.item(Float.self))
|
|
tokenCount += tokens.item(Int.self)
|
|
|
|
// report training loss
|
|
if (iteration + 1) % parameters.stepsPerReport == 0 {
|
|
let trainingLoss = MLXArray(losses).mean(stream: .cpu).item(Float.self)
|
|
let now = Date.timeIntervalSinceReferenceDate
|
|
|
|
let iterationsPerSecond = Double(parameters.stepsPerReport) / (now - start)
|
|
let tokensPerSecond = Double(tokenCount) / (now - start)
|
|
|
|
if await progress(
|
|
.train(
|
|
iteration: iteration, trainingLoss: trainingLoss,
|
|
iterationsPerSecond: iterationsPerSecond, tokensPerSecond: tokensPerSecond))
|
|
== .stop
|
|
{
|
|
break
|
|
}
|
|
|
|
losses.removeAll()
|
|
tokenCount = 0
|
|
start = Date.timeIntervalSinceReferenceDate
|
|
}
|
|
|
|
// report validation loss
|
|
if iteration == 0 || (iteration + 1) % parameters.stepsPerEval == 0 {
|
|
let validationStart = Date.timeIntervalSinceReferenceDate
|
|
let validationLoss = evaluate(
|
|
model: model, dataset: validate, loss: loss, tokenizer: tokenizer,
|
|
batchSize: parameters.batchSize, batchCount: parameters.validationBatches)
|
|
let now = Date.timeIntervalSinceReferenceDate
|
|
|
|
if await progress(
|
|
.validation(
|
|
iteration: iteration, validationLoss: validationLoss,
|
|
validationTime: now - validationStart)) == .stop
|
|
{
|
|
break
|
|
}
|
|
|
|
start = Date.timeIntervalSinceReferenceDate
|
|
}
|
|
|
|
// save adapter weights if needed
|
|
if let adapterURL = parameters.adapterURL, (iteration + 1) % parameters.saveEvery == 0 {
|
|
try saveLoRAWeights(model: model, url: adapterURL)
|
|
|
|
if await progress(.save(iteration: iteration, url: adapterURL)) == .stop {
|
|
break
|
|
}
|
|
|
|
start = Date.timeIntervalSinceReferenceDate
|
|
}
|
|
|
|
if iteration + 1 >= parameters.iterations {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|