- document the tokenizer used (https://github.com/huggingface/swift-transformers) - provide a hook for tokenizer configuration, prompt augmentation - this isn't as rich as the python equivalents but it helps a little
96 lines
3.0 KiB
Swift
96 lines
3.0 KiB
Swift
// Copyright © 2024 Apple Inc.
|
|
|
|
import AsyncAlgorithms
|
|
import Foundation
|
|
import Hub
|
|
import MLX
|
|
import MLXNN
|
|
import MLXRandom
|
|
import Tokenizers
|
|
|
|
struct LLMError: Error {
|
|
let message: String
|
|
}
|
|
|
|
/// Load and return the model and tokenizer
|
|
public func load(
|
|
hub: HubApi = HubApi(), configuration: ModelConfiguration, progressHandler: @escaping (Progress) -> Void = { _ in }
|
|
) async throws -> (LLMModel, Tokenizer) {
|
|
// note: this doesn't have a way to pass the HubApi
|
|
let tokenizer = try await loadTokenizer(configuration: configuration)
|
|
|
|
// download the model weights and config
|
|
let repo = Hub.Repo(id: configuration.id)
|
|
let modelFiles = ["config.json", "*.safetensors"]
|
|
let modelDirectory = try await hub.snapshot(
|
|
from: repo, matching: modelFiles, progressHandler: progressHandler)
|
|
|
|
// create the model (no weights loaded)
|
|
let configurationURL = modelDirectory.appending(component: "config.json")
|
|
let baseConfig = try JSONDecoder().decode(
|
|
BaseConfiguration.self, from: Data(contentsOf: configurationURL))
|
|
|
|
let model = try baseConfig.modelType.createModel(configuration: configurationURL)
|
|
|
|
// load the weights
|
|
var weights = [String: MLXArray]()
|
|
let enumerator = FileManager.default.enumerator(
|
|
at: modelDirectory, includingPropertiesForKeys: nil)!
|
|
for case let url as URL in enumerator {
|
|
if url.pathExtension == "safetensors" {
|
|
let w = try loadArrays(url: url)
|
|
for (key, value) in w {
|
|
weights[key] = value
|
|
}
|
|
}
|
|
}
|
|
|
|
// quantize if needed
|
|
if let quantization = baseConfig.quantization {
|
|
quantizeIfNeeded(model: model, weights: weights, quantization: quantization)
|
|
}
|
|
|
|
// apply the loaded weights
|
|
let parameters = ModuleParameters.unflattened(weights)
|
|
try model.update(parameters: parameters, verify: [.all])
|
|
|
|
eval(model)
|
|
|
|
return (model, tokenizer)
|
|
}
|
|
|
|
// MARK: - Quantization
|
|
|
|
private func quantizeIfNeeded(
|
|
model: LLMModel, weights: [String: MLXArray], quantization: BaseConfiguration.Quantization
|
|
) {
|
|
|
|
func linearPredicate(layer: Module) -> Bool {
|
|
if let layer = layer as? Linear {
|
|
// avoid quantizing gate layers, otherwise we have to re-quant and upload all the mixtral models
|
|
return layer.weight.dim(0) != 8
|
|
}
|
|
return false
|
|
}
|
|
|
|
var predicate = linearPredicate(layer:)
|
|
|
|
// for legacy models that don't have lm_head quant due to non-32 dims
|
|
if weights["lm_head.scales"] == nil {
|
|
let vocabularySize = model.vocabularySize
|
|
|
|
func vocabularySizePredicate(layer: Module) -> Bool {
|
|
if let layer = layer as? Linear {
|
|
return layer.weight.dim(0) != 8 && layer.weight.dim(0) != vocabularySize
|
|
}
|
|
return false
|
|
}
|
|
|
|
predicate = vocabularySizePredicate(layer:)
|
|
}
|
|
|
|
QuantizedLinear.quantize(
|
|
model: model, groupSize: quantization.groupSize, bits: quantization.bits,
|
|
predicate: predicate)
|
|
}
|