- add replacement tokenizer class for unknown tokenizers - fix quantization for models that don't have lm_head quantized Requires https://github.com/ml-explore/mlx-swift/pull/28
266 lines
9.1 KiB
Swift
266 lines
9.1 KiB
Swift
// Copyright © 2024 Apple Inc.
|
|
|
|
import Foundation
|
|
import MLX
|
|
import MLXNN
|
|
|
|
// port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/llama.py
|
|
|
|
private class Attention: Module {
|
|
|
|
let args: LlamaConfiguration
|
|
let repeats: Int
|
|
let scale: Float
|
|
|
|
@ModuleInfo(key: "q_proj") var wq: Linear
|
|
@ModuleInfo(key: "k_proj") var wk: Linear
|
|
@ModuleInfo(key: "v_proj") var wv: Linear
|
|
@ModuleInfo(key: "o_proj") var wo: Linear
|
|
|
|
let rope: RoPE
|
|
|
|
public init(_ args: LlamaConfiguration) {
|
|
self.args = args
|
|
|
|
let dim = args.hiddenSize
|
|
let heads = args.attentionHeads
|
|
let kvHeads = args.kvHeads
|
|
|
|
self.repeats = heads / kvHeads
|
|
|
|
let headDim = args.hiddenSize / heads
|
|
self.scale = pow(Float(headDim), -0.5)
|
|
|
|
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: false)
|
|
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
|
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
|
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
|
|
|
|
let ropeScale: Float
|
|
if let ropeScaling = args.ropeScaling, ropeScaling["type"] == .string("linear"),
|
|
let factor = ropeScaling["factor"]
|
|
{
|
|
switch factor {
|
|
case .string:
|
|
fatalError("ropeScaling.factor must be a float")
|
|
case .float(let v):
|
|
ropeScale = 1 / v
|
|
}
|
|
} else {
|
|
ropeScale = 1
|
|
}
|
|
|
|
self.rope = RoPE(
|
|
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta,
|
|
scale: ropeScale)
|
|
}
|
|
|
|
public func callAsFunction(
|
|
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
|
) -> (MLXArray, (MLXArray, MLXArray)) {
|
|
let (B, L) = (x.dim(0), x.dim(1))
|
|
|
|
var queries = wq(x)
|
|
var keys = wk(x)
|
|
var values = wv(x)
|
|
|
|
// prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
|
|
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
|
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
|
|
|
if repeats > 1 {
|
|
keys = MLXArray.repeat(keys, count: repeats, axis: 1)
|
|
values = MLXArray.repeat(values, count: repeats, axis: 1)
|
|
}
|
|
|
|
if let (keyCache, valueCache) = cache {
|
|
queries = rope(queries, offset: keyCache.dim(2))
|
|
keys = rope(keys, offset: keyCache.dim(2))
|
|
keys = concatenated([keyCache, keys], axis: 2)
|
|
values = concatenated([valueCache, values], axis: 2)
|
|
} else {
|
|
queries = rope(queries)
|
|
keys = rope(keys)
|
|
}
|
|
|
|
var scores = (queries * self.scale).matmul(keys.transposed(0, 1, 3, 2))
|
|
if let mask {
|
|
scores = scores + mask
|
|
}
|
|
|
|
scores = softMax(scores.asType(.float32), axis: -1).asType(scores.dtype)
|
|
|
|
let output = matmul(scores, values).transposed(0, 2, 1, 3).reshaped(B, L, -1)
|
|
|
|
return (wo(output), (keys, values))
|
|
}
|
|
}
|
|
|
|
private class MLP: Module, UnaryLayer {
|
|
|
|
@ModuleInfo(key: "gate_proj") var gate: Linear
|
|
@ModuleInfo(key: "down_proj") var down: Linear
|
|
@ModuleInfo(key: "up_proj") var up: Linear
|
|
|
|
public init(dimensions: Int, hiddenDimensions: Int) {
|
|
self._gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
|
self._down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
|
|
self._up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
|
}
|
|
|
|
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
|
down(silu(gate(x)) * up(x))
|
|
}
|
|
}
|
|
|
|
private class TransformerBlock: Module {
|
|
|
|
@ModuleInfo(key: "self_attn") var attention: Attention
|
|
let mlp: MLP
|
|
|
|
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
|
|
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
|
|
|
|
public init(_ args: LlamaConfiguration) {
|
|
self._attention.wrappedValue = Attention(args)
|
|
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
|
|
self._inputLayerNorm.wrappedValue = RMSNorm(
|
|
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
|
self._postAttentionLayerNorm.wrappedValue = RMSNorm(
|
|
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
|
}
|
|
|
|
public func callAsFunction(
|
|
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
|
) -> (MLXArray, (MLXArray, MLXArray)) {
|
|
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
|
|
let h = x + r
|
|
r = mlp(postAttentionLayerNorm(h))
|
|
let out = h + r
|
|
return (out, cache)
|
|
}
|
|
}
|
|
|
|
public class LlamaModelInner: Module {
|
|
|
|
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
|
|
|
|
fileprivate let layers: [TransformerBlock]
|
|
let norm: RMSNorm
|
|
|
|
public init(_ args: LlamaConfiguration) {
|
|
precondition(args.vocabularySize > 0)
|
|
|
|
self._embedTokens.wrappedValue = Embedding(
|
|
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
|
|
|
|
self.layers = (0 ..< args.hiddenLayers)
|
|
.map { _ in
|
|
TransformerBlock(args)
|
|
}
|
|
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
|
}
|
|
|
|
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
|
|
MLXArray, [(MLXArray, MLXArray)]
|
|
) {
|
|
var h = embedTokens(inputs)
|
|
|
|
var mask: MLXArray? = nil
|
|
if h.dim(1) > 1 {
|
|
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
|
|
mask = mask?.asType(h.dtype)
|
|
}
|
|
|
|
var newCache = [(MLXArray, MLXArray)]()
|
|
|
|
for (i, layer) in layers.enumerated() {
|
|
var cacheUpdate: (MLXArray, MLXArray)
|
|
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
|
|
newCache.append(cacheUpdate)
|
|
}
|
|
|
|
return (norm(h), newCache)
|
|
}
|
|
}
|
|
|
|
public class LlamaModel: Module, LLMModel {
|
|
|
|
public let vocabularySize: Int
|
|
let model: LlamaModelInner
|
|
|
|
@ModuleInfo(key: "lm_head") var lmHead: Linear
|
|
|
|
public init(_ args: LlamaConfiguration) {
|
|
self.vocabularySize = args.vocabularySize
|
|
self.model = LlamaModelInner(args)
|
|
self._lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: false)
|
|
}
|
|
|
|
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
|
|
MLXArray, [(MLXArray, MLXArray)]
|
|
) {
|
|
let (out, cache) = model(inputs, cache: cache)
|
|
return (lmHead(out), cache)
|
|
}
|
|
}
|
|
|
|
public struct LlamaConfiguration: Codable {
|
|
|
|
var hiddenSize: Int
|
|
var hiddenLayers: Int
|
|
var intermediateSize: Int
|
|
var attentionHeads: Int
|
|
var rmsNormEps: Float
|
|
var vocabularySize: Int
|
|
var kvHeads: Int
|
|
var ropeTheta: Float = 10_000
|
|
var ropeTraditional: Bool = false
|
|
var ropeScaling: [String: StringOrNumber]? = nil
|
|
|
|
enum CodingKeys: String, CodingKey {
|
|
case hiddenSize = "hidden_size"
|
|
case hiddenLayers = "num_hidden_layers"
|
|
case intermediateSize = "intermediate_size"
|
|
case attentionHeads = "num_attention_heads"
|
|
case rmsNormEps = "rms_norm_eps"
|
|
case vocabularySize = "vocab_size"
|
|
case kvHeads = "num_key_value_heads"
|
|
case ropeTheta = "rope_theta"
|
|
case ropeTraditional = "rope_traditional"
|
|
case ropeScaling = "rope_scaling"
|
|
}
|
|
|
|
public init(from decoder: Decoder) throws {
|
|
// custom implementation to handle optional keys with required values
|
|
let container: KeyedDecodingContainer<LlamaConfiguration.CodingKeys> =
|
|
try decoder.container(
|
|
keyedBy: LlamaConfiguration.CodingKeys.self)
|
|
|
|
self.hiddenSize = try container.decode(
|
|
Int.self, forKey: LlamaConfiguration.CodingKeys.hiddenSize)
|
|
self.hiddenLayers = try container.decode(
|
|
Int.self, forKey: LlamaConfiguration.CodingKeys.hiddenLayers)
|
|
self.intermediateSize = try container.decode(
|
|
Int.self, forKey: LlamaConfiguration.CodingKeys.intermediateSize)
|
|
self.attentionHeads = try container.decode(
|
|
Int.self, forKey: LlamaConfiguration.CodingKeys.attentionHeads)
|
|
self.rmsNormEps = try container.decode(
|
|
Float.self, forKey: LlamaConfiguration.CodingKeys.rmsNormEps)
|
|
self.vocabularySize = try container.decode(
|
|
Int.self, forKey: LlamaConfiguration.CodingKeys.vocabularySize)
|
|
self.kvHeads = try container.decode(Int.self, forKey: LlamaConfiguration.CodingKeys.kvHeads)
|
|
self.ropeTheta =
|
|
try container.decodeIfPresent(
|
|
Float.self, forKey: LlamaConfiguration.CodingKeys.ropeTheta)
|
|
?? 10_000
|
|
self.ropeTraditional =
|
|
try container.decodeIfPresent(
|
|
Bool.self, forKey: LlamaConfiguration.CodingKeys.ropeTraditional) ?? false
|
|
self.ropeScaling = try container.decodeIfPresent(
|
|
[String: StringOrNumber].self, forKey: LlamaConfiguration.CodingKeys.ropeScaling)
|
|
|
|
}
|
|
}
|