Files
mlx-swift-examples/Libraries/LLM/Util.swift
David Koski bb7bacc077 fix for #2 -- CodeLlama crashes
- add replacement tokenizer class for unknown tokenizers
- fix quantization for models that don't have lm_head quantized

Requires https://github.com/ml-explore/mlx-swift/pull/28
2024-02-26 10:38:05 -08:00

174 lines
5.4 KiB
Swift

// Copyright © 2024 Apple Inc.
import AsyncAlgorithms
import Foundation
import Hub
import MLX
import MLXNN
import MLXRandom
import Tokenizers
struct LLMError: Error {
let message: String
}
/// Load and return the model and tokenizer
public func load(
hub: HubApi = HubApi(), name: String, progressHandler: @escaping (Progress) -> Void = { _ in }
) async throws -> (LLMModel, Tokenizer) {
// note: this doesn't have a way to pass the HubApi
let tokenizer = try await loadTokenizer(name: name)
// download the model weights and config
let repo = Hub.Repo(id: name)
let modelFiles = ["config.json", "weights.00.safetensors"]
let modelDirectory = try await hub.snapshot(
from: repo, matching: modelFiles, progressHandler: progressHandler)
// create the model (no weights loaded)
let configurationURL = modelDirectory.appending(component: "config.json")
let baseConfig = try JSONDecoder().decode(
BaseConfiguration.self, from: Data(contentsOf: configurationURL))
let model = try baseConfig.modelType.createModel(configuration: configurationURL)
// load the weights
let weights = try loadArrays(url: modelDirectory.appending(component: "weights.00.safetensors"))
// quantize if needed
if let quantization = baseConfig.quantization {
quantizeIfNeeded(model: model, weights: weights, quantization: quantization)
}
// apply the loaded weights
let parameters = ModuleParameters.unflattened(weights)
try model.update(parameters: parameters, verify: [.all])
eval(model)
return (model, tokenizer)
}
public func loadTokenizer(name: String) async throws -> Tokenizer {
// from AutoTokenizer.from() -- this lets us override parts of the configuration
let config = LanguageModelConfigurationFromHub(modelName: name)
guard var tokenizerConfig = try await config.tokenizerConfig else {
throw LLMError(message: "missing config")
}
let tokenizerData = try await config.tokenizerData
if let tokenizerClass = tokenizerConfig.tokenizerClass?.stringValue,
let replacement = replacementTokenizers[tokenizerClass]
{
var dictionary = tokenizerConfig.dictionary
dictionary["tokenizer_class"] = replacement
tokenizerConfig = Config(dictionary)
}
return try PreTrainedTokenizer(tokenizerConfig: tokenizerConfig, tokenizerData: tokenizerData)
}
/// overrides for TokenizerModel/knownTokenizers
let replacementTokenizers = [
"CodeLlamaTokenizer": "LlamaTokenizer"
]
private func quantizeIfNeeded(
model: LLMModel, weights: [String: MLXArray], quantization: BaseConfiguration.Quantization
) {
func linearPredicate(layer: Module) -> Bool {
if let layer = layer as? Linear {
// avoid quantizing gate layers, otherwise we have to re-quant and upload all the mixtral models
return layer.weight.dim(0) != 8
}
return false
}
var predicate = linearPredicate(layer:)
// for legacy models that don't have lm_head quant due to non-32 dims
if weights["lm_head.scales"] == nil {
let vocabularySize = model.vocabularySize
func vocabularySizePredicate(layer: Module) -> Bool {
if let layer = layer as? Linear {
return layer.weight.dim(0) != 8 && layer.weight.dim(0) != vocabularySize
}
return false
}
predicate = vocabularySizePredicate(layer:)
}
QuantizedLinear.quantize(
model: model, groupSize: quantization.groupSize, bits: quantization.bits,
predicate: predicate)
}
private func sample(logits: MLXArray, temp: Float) -> MLXArray {
if temp == 0 {
return argMax(logits, axis: -1)
} else {
return categorical(logits * (1 / temp))
}
}
/// Synchronous generator of tokens.
///
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py
public struct TokenIterator: Sequence, IteratorProtocol {
let model: LLMModel
let temp: Float
var y: MLXArray
var cache: [(MLXArray, MLXArray)]
var first = true
public init(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) {
self.model = model
self.temp = temp
self.y = prompt
self.cache = []
}
mutating public func next() -> MLXArray? {
var logits: MLXArray
(logits, cache) = model(expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
y = sample(logits: logits[-1, axis: 1], temp: temp)
return y
}
}
/// Async generator of tokens.
///
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py.
///
/// Note that because MLXArray is not thread safe this eval's the result and sends the TokenId back
/// to the caller.
public func generate(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) -> (
Task<Void, Never>, AsyncBufferSequence<AsyncChannel<Int>>
) {
let channel = AsyncChannel<Int>()
let buffer = channel.buffer(policy: .bounded(10))
let task = Task {
var y = prompt
var cache = [(MLXArray, MLXArray)]()
while !Task.isCancelled {
var logits: MLXArray
(logits, cache) = model(
expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
y = sample(logits: logits[-1, axis: 1], temp: temp)
eval(y)
await channel.send(y.item(Int.self))
}
}
return (task, buffer)
}